ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anthropogenic effects  (2)
  • ENSO  (2)
  • American Meteorological Society  (4)
  • American Chemical Society (ACS)
  • Springer Nature
  • 2010-2014  (4)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 22 (2009): 5175–5204, doi:10.1175/2009JCLI2863.1.
    Description: The Massachusetts Institute of Technology (MIT) Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model’s first projections were published in 2003, substantial improvements have been made to the model, and improved estimates of the probability distributions of uncertain input parameters have become available. The new projections are considerably warmer than the 2003 projections; for example, the median surface warming in 2091–2100 is 5.1°C compared to 2.4°C in the earlier study. Many changes contribute to the stronger warming; among the more important ones are taking into account the cooling in the second half of the twentieth century due to volcanic eruptions for input parameter estimation and a more sophisticated method for projecting gross domestic product (GDP) growth, which eliminated many low-emission scenarios. However, if recently published data, suggesting stronger twentieth-century ocean warming, are used to determine the input climate parameters, the median projected warming at the end of the twenty-first century is only 4.1°C. Nevertheless, all ensembles of the simulations discussed here produce a much smaller probability of warming less than 2.4°C than implied by the lower bound of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) projected likely range for the A1FI scenario, which has forcing very similar to the median projection in this study. The probability distribution for the surface warming produced by this analysis is more symmetric than the distribution assumed by the IPCC because of a different feedback between the climate and the carbon cycle, resulting from the inclusion in this model of the carbon–nitrogen interaction in the terrestrial ecosystem.
    Description: This work was supported in part by the Office of Science (BER), U.S. Department of Energy Grants DE-FG02-94ER61937 and DE-FG02-93ER61677, and by the industrial and foundations sponsors of The MIT Joint Program on the Science and Policy of Global Change (http://globalchange.mit.edu/sponsors/ current.html).
    Keywords: Probability forecasts/models ; Climate prediction ; Anthropogenic effects ; Numerical analysis/modeling ; Feedback
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 2622–2651, doi:10.1175/JCLI-D-11-00301.1.
    Description: This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.
    Description: M. Alexander, A. Capotondi, and J. Scott’s participation was supported by a grant from the NSF Climate and Large-scale Dynamics Program. Y.-O. Kwon gratefully acknowledges support from a WHOI Heyman fellowship and a grant from the NSF Climate and Largescale Dynamics Program. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy.
    Description: 2012-10-15
    Keywords: Atmosphere-ocean interaction ; El Nino ; ENSO ; La Nina ; Pacific decadal oscillation ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 3549–3565, doi:10.1175/JCLI-D-11-00320.1.
    Description: The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.
    Description: This research was supported by grants from the NOAA office of Global Programs and the NSF Climate and Global Dynamics Division.
    Description: 2012-11-15
    Keywords: North Pacific Ocean ; Atmosphere-ocean interaction ; ENSO ; Thermocline circulation ; Waves, oceanic ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 2230–2231, doi:10.1175/2009JCLI3566.1.
    Description: Corrigendum: Sokolov, A., and Coauthors, 2009: Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. J. Climate, 22, 5175–5204.
    Keywords: Probability forecasts/models ; Climate prediction ; Anthropogenic effects ; Numerical analysis/modeling ; Feedback
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...