ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics  (7)
  • International Union of Crystallography (IUC)  (7)
  • American Association of Petroleum Geologists (AAPG)  (2)
  • American Chemical Society  (2)
  • Nature Publishing Group (NPG)  (2)
  • Cambridge University Press  (1)
  • Macmillian Magazines Ltd.
  • Royal Society
  • 2010-2014  (21)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-04-11
    Description: In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraus, Daniel -- Yang, Qin -- Kong, Dong -- Banks, Alexander S -- Zhang, Lin -- Rodgers, Joseph T -- Pirinen, Eija -- Pulinilkunnil, Thomas C -- Gong, Fengying -- Wang, Ya-chin -- Cen, Yana -- Sauve, Anthony A -- Asara, John M -- Peroni, Odile D -- Monia, Brett P -- Bhanot, Sanjay -- Alhonen, Leena -- Puigserver, Pere -- Kahn, Barbara B -- K01 DK094943/DK/NIDDK NIH HHS/ -- K08 DK090149/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK0460200/DK/NIDDK NIH HHS/ -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P30 DK57521/DK/NIDDK NIH HHS/ -- P30CA006516-46/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK100385/DK/NIDDK NIH HHS/ -- R01 DK69966/DK/NIDDK NIH HHS/ -- R37 DK043051/DK/NIDDK NIH HHS/ -- R37 DK43051/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] [3] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; 1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, Massachusetts 02215, USA. ; Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California 92008-7326, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717514" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Adipocytes/metabolism/secretion ; Adipose Tissue/enzymology/metabolism ; Adipose Tissue, White/enzymology/metabolism ; Animals ; Diabetes Mellitus, Type 2/enzymology/metabolism ; *Diet ; Energy Metabolism ; Fatty Liver ; Gene Knockdown Techniques ; Glucose Intolerance ; Glucose Transporter Type 4/deficiency/genetics/metabolism ; Insulin Resistance ; Liver/enzymology ; Male ; Mice ; Mice, Inbred C57BL ; NAD/metabolism ; Niacinamide/metabolism ; Nicotinamide N-Methyltransferase/*deficiency/genetics/*metabolism ; Obesity/*enzymology/etiology/genetics/*prevention & control ; Ornithine Decarboxylase/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/metabolism ; S-Adenosylmethionine/metabolism ; Sirtuin 1/metabolism ; Spermine/analogs & derivatives/metabolism ; Thinness/enzymology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-30
    Description: During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical-basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yu-Chiun -- Khan, Zia -- Kaschube, Matthias -- Wieschaus, Eric F -- 5R37HD15587/HD/NICHD NIH HHS/ -- P50 GM071508/GM/NIGMS NIH HHS/ -- R37 HD015587/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;484(7394):390-3. doi: 10.1038/nature10938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456706" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; *Cell Polarity ; Cell Shape ; Choristoma ; Drosophila Proteins/deficiency/genetics/metabolism ; Drosophila melanogaster/*cytology/*embryology/genetics/metabolism ; Epithelial Cells/*cytology/metabolism/ultrastructure ; Epithelium/*embryology/metabolism/ultrastructure ; Gastrula/cytology/embryology/metabolism/ultrastructure ; Gastrulation/*physiology ; Glycogen Synthase Kinase 3 ; Intracellular Signaling Peptides and Proteins/deficiency/genetics/metabolism ; Protein-Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-18
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2011-01-15
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-01
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-21
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-15
    Description: The asymmetric unit of the title compound, [MnCl2(C16H20N2O)4]·2C16H20N2O, is composed of two coordinating N-(adamantan-1-yl)pyridine-4-carboxamide molecules, one Cl− anion, an MnII ion, lying on an inversion centre, and one free N-(adamantan-1-yl)pyridine-4-carboxamide molecule. The distorted octahedral Mn environment comprises two terminal Cl atoms and four monodentate N atoms from four organic ligands. All the carbamoyl N atoms are involved in intermolecular N—H...O hydrogen-bonding interactions which link the molecules into a chain along the a axis.
    Electronic ISSN: 1600-5368
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-02-04
    Description: A series of short and steep unidirectionally migrating deep-water channels, which are typically without levees and migrate progressively northeastward, are identified in the Baiyun depression, Pearl River Mouth Basin. Using three-dimensional seismic and well data, the current study documents their morphology, internal architecture, and depositional history, and discusses the distribution and depositional controls on the bottom current–reworked sands within these channels. Unidirectionally migrating deep-water channels consist of different channel-complex sets (CCSs) that are, overall, short and steep, and their northeastern walls are, overall, steeper than their southwestern counterparts. Within each CCS, bottom current–reworked sands in the lower part grade upward into muddy slumps and debris-flow deposits and, finally, into shale drapes. Three stages of CCSs development are recognized: (1) the early lowstand incision stage, during which intense gravity and/or turbidity flows versus relatively weak along-slope bottom currents of the North Pacific intermediate water (NPIW-BCs) resulted in basal erosional bounding surfaces and limited bottom current–reworked sands; (2) the late lowstand lateral-migration and active-fill stage, with gradual CCS widening and progressively northeastward migration, characterized by reworking of gravity- and/or turbidity-flow deposits by vigorous NPIW-BCs and the CCSs being mainly filled by bottom current–reworked sands and limited slumps and debris-flow deposits; and (3) the transgression abandonment stage, characterized by the termination of the gravity and/or turbidity flows and the CCSs being widely draped by marine shales. These three stages repeated through time, leading to the generation of unidirectionally migrating deep-water channels. The distribution of the bottom current–reworked sands varies both spatially and temporally. Spatially, these sands mainly accumulate along the axis of the unidirectionally migrating deep-water channels and are preferentially deposited to the side toward which the channels migrated. Temporally, these sands mainly accumulated during the late lowstand lateral-migration and active-fill stage. The bottom current–reworked sands developed under the combined action of gravity and/or turbidity flows and along-slope bottom currents of NPIW-BCs. Other factors, including relative sea level fluctuations, sediment supply, and slope configurations, also affected the formation and distribution of these sands. The proposed distribution pattern of the bottom current–reworked sands has practical implications for predicting reservoir occurrence and distribution in bottom current–related channels.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    International Union of Crystallography (IUC)
    Publication Date: 2012-06-03
    Description: During the formation of the title salt, C7H10N+·C3H3O4−, an H atom of a carboxyl group was transferred to the amino group. All non-H atoms of the cation are essentially coplanar [r.m.s. deviation = 0.007 (4) Å]. The mean planes of the carboxylate and carboxyl groups of the anion form a dihedral of 69.67 (1)°. In the crystal, N—H...O and O—H...O hydrogen bonds connect the anions and cations, forming a two-dimensional network parallel to the bc plane.
    Electronic ISSN: 1600-5368
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...