ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Protein Folding  (4)
  • Nature Publishing Group (NPG)  (4)
  • 2010-2014  (4)
  • 1935-1939
Collection
Publisher
  • Nature Publishing Group (NPG)  (4)
Years
  • 2010-2014  (4)
  • 1935-1939
Year
  • 1
    Publication Date: 2010-08-06
    Description: People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Seth -- Khatib, Firas -- Treuille, Adrien -- Barbero, Janos -- Lee, Jeehyung -- Beenen, Michael -- Leaver-Fay, Andrew -- Baker, David -- Popovic, Zoran -- Players, Foldit -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Aug 5;466(7307):756-60. doi: 10.1038/nature09304.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science and Engineering, University of Washington, Box 352350, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686574" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Computational Biology/*methods ; Computer Graphics ; Computer Simulation ; Cooperative Behavior ; Cues ; *Games, Experimental ; *Group Processes ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Imaging, Three-Dimensional ; *Internet ; Leisure Activities ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Photic Stimulation ; *Problem Solving ; Protein Conformation ; *Protein Folding ; Proteins/*chemistry/metabolism ; Stochastic Processes ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-22
    Description: Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 A resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 A resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Junjie -- Baker, Matthew L -- Schroder, Gunnar F -- Douglas, Nicholai R -- Reissmann, Stefanie -- Jakana, Joanita -- Dougherty, Matthew -- Fu, Caroline J -- Levitt, Michael -- Ludtke, Steven J -- Frydman, Judith -- Chiu, Wah -- P41 RR002250/RR/NCRR NIH HHS/ -- P41 RR002250-23/RR/NCRR NIH HHS/ -- P41 RR002250-237254/RR/NCRR NIH HHS/ -- P41 RR002250-24/RR/NCRR NIH HHS/ -- P41 RR002250-247897/RR/NCRR NIH HHS/ -- PN2 EY016525/EY/NEI NIH HHS/ -- PN2 EY016525-02S1/EY/NEI NIH HHS/ -- PN2 EY016525-03/EY/NEI NIH HHS/ -- PN2 EY016525-04/EY/NEI NIH HHS/ -- PN2 EY016525-05/EY/NEI NIH HHS/ -- R01 GM063817/GM/NIGMS NIH HHS/ -- R01 GM079429/GM/NIGMS NIH HHS/ -- R01 GM079429-03/GM/NIGMS NIH HHS/ -- R01 GM080139/GM/NIGMS NIH HHS/ -- R01 GM080139-03/GM/NIGMS NIH HHS/ -- R01 GM080139-04/GM/NIGMS NIH HHS/ -- R90 DK071504/DK/NIDDK NIH HHS/ -- R90 DK071504-03/DK/NIDDK NIH HHS/ -- T32 GM007276-30/GM/NIGMS NIH HHS/ -- T32 GM007276-31/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 21;463(7279):379-83. doi: 10.1038/nature08701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20090755" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/chemistry/metabolism/pharmacology ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Group II Chaperonins/*chemistry/*metabolism/ultrastructure ; Hydrolysis/drug effects ; Methanococcus/*chemistry ; Models, Molecular ; Protein Binding ; Protein Conformation/drug effects ; *Protein Folding ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-09
    Description: Unlike random heteropolymers, natural proteins fold into unique ordered structures. Understanding how these are encoded in amino-acid sequences is complicated by energetically unfavourable non-ideal features--for example kinked alpha-helices, bulged beta-strands, strained loops and buried polar groups--that arise in proteins from evolutionary selection for biological function or from neutral drift. Here we describe an approach to designing ideal protein structures stabilized by completely consistent local and non-local interactions. The approach is based on a set of rules relating secondary structure patterns to protein tertiary motifs, which make possible the design of funnel-shaped protein folding energy landscapes leading into the target folded state. Guided by these rules, we designed sequences predicted to fold into ideal protein structures consisting of alpha-helices, beta-strands and minimal loops. Designs for five different topologies were found to be monomeric and very stable and to adopt structures in solution nearly identical to the computational models. These results illuminate how the folding funnels of natural proteins arise and provide the foundation for engineering a new generation of functional proteins free from natural evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koga, Nobuyasu -- Tatsumi-Koga, Rie -- Liu, Gaohua -- Xiao, Rong -- Acton, Thomas B -- Montelione, Gaetano T -- Baker, David -- U54 GM094597/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Nov 8;491(7423):222-7. doi: 10.1038/nature11600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Washington, Department of Biochemistry and Howard Hughes Medical Institute, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23135467" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; *Models, Molecular ; *Protein Folding ; *Protein Stability ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-13
    Description: Type 1 pili, produced by uropathogenic Escherichia coli, are multisubunit fibres crucial in recognition of and adhesion to host tissues. During pilus biogenesis, subunits are recruited to an outer membrane assembly platform, the FimD usher, which catalyses their polymerization and mediates pilus secretion. The recent determination of the crystal structure of an initiation complex provided insight into the initiation step of pilus biogenesis resulting in pore activation, but very little is known about the elongation steps that follow. Here, to address this question, we determine the structure of an elongation complex in which the tip complex assembly composed of FimC, FimF, FimG and FimH passes through FimD. This structure demonstrates the conformational changes required to prevent backsliding of the nascent pilus through the FimD pore and also reveals unexpected properties of the usher pore. We show that the circular binding interface between the pore lumen and the folded substrate participates in transport by defining a low-energy pathway along which the nascent pilus polymer is guided during secretion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geibel, Sebastian -- Procko, Erik -- Hultgren, Scott J -- Baker, David -- Waksman, Gabriel -- 85602/Medical Research Council/United Kingdom -- AI029549/AI/NIAID NIH HHS/ -- G0800002/Medical Research Council/United Kingdom -- G0800002(85602)/Medical Research Council/United Kingdom -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41GM103533/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 11;496(7444):243-6. doi: 10.1038/nature12007.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579681" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/*metabolism ; Fimbriae Proteins/*chemistry/*metabolism ; Fimbriae, Bacterial/chemistry/metabolism ; Models, Molecular ; Protein Conformation ; *Protein Folding ; Protein Stability ; Protein Transport ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...