ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-03
    Description: PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7 approximately ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koyano, Fumika -- Okatsu, Kei -- Kosako, Hidetaka -- Tamura, Yasushi -- Go, Etsu -- Kimura, Mayumi -- Kimura, Yoko -- Tsuchiya, Hikaru -- Yoshihara, Hidehito -- Hirokawa, Takatsugu -- Endo, Toshiya -- Fon, Edward A -- Trempe, Jean-Francois -- Saeki, Yasushi -- Tanaka, Keiji -- Matsuda, Noriyuki -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan. ; Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan. ; Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan. ; Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan. ; Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. ; 1] JST-CREST/Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan [2] JST-CREST/Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan. ; McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Fibroblasts ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Mitochondria/metabolism ; Mutation/genetics ; Parkinson Disease ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-22
    Description: Author(s): Ken Matsuno, Hideki Ishihara, Masashi Kimura, and Takamitsu Tatsuoka We investigate five-dimensional vacuum solutions which represent rotating multiblack holes in asymptotically Kaluza-Klein spacetimes. We show that multiblack holes rotate maximally along extra dimension, and stationary configurations in vacuum are achieved by the balance of the gravitational attract... [Phys. Rev. D 86, 044036] Published Tue Aug 21, 2012
    Keywords: General relativity, gravitation
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-17
    Description: Author(s): Rampei Kimura and Daisuke Yamauchi We investigate the possibility of a new massive gravity theory with derivative interactions as an extension of de Rham-Gabadadze-Tolley massive gravity. We find the most general Lagrangian of derivative interactions using a Riemann tensor whose cutoff energy scale is Λ 3 , which is consistent with de ... [Phys. Rev. D 88, 084025] Published Wed Oct 16, 2013
    Keywords: General relativity, gravitation
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-15
    Description: Author(s): Tomohiro Harada and Masashi Kimura [Phys. Rev. D 84, 124032] Published Wed Dec 14, 2011
    Keywords: General relativity, gravitation
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-14
    Description: Author(s): Rampei Kimura, Tsutomu Kobayashi, and Kazuhiro Yamamoto A generic second-order scalar-tensor theory contains a nonlinear derivative self-interaction of the scalar degree of freedom ϕ à la Galileon models, which allows for the Vainshtein screening mechanism. We investigate this effect on subhorizon scales in a cosmological background, based on the most ge... [Phys. Rev. D 85, 024023] Published Fri Jan 13, 2012
    Keywords: General relativity, gravitation
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-07
    Description: Author(s): Takamitsu Tatsuoka, Hideki Ishihara, Masashi Kimura, and Ken Matsuno We construct odd-dimensional extremal charged black hole solutions with a twisted S 1 as an extra dimension on generalized Euclidean Taub-NUT spaces. There exists a null hypersurface where an expansion for an outgoing null geodesic congruence vanishes, then these spacetimes look like black holes. We ... [Phys. Rev. D 85, 044006] Published Mon Feb 06, 2012
    Keywords: General relativity, gravitation
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-04
    Description: Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cock, J Mark -- Sterck, Lieven -- Rouze, Pierre -- Scornet, Delphine -- Allen, Andrew E -- Amoutzias, Grigoris -- Anthouard, Veronique -- Artiguenave, Francois -- Aury, Jean-Marc -- Badger, Jonathan H -- Beszteri, Bank -- Billiau, Kenny -- Bonnet, Eric -- Bothwell, John H -- Bowler, Chris -- Boyen, Catherine -- Brownlee, Colin -- Carrano, Carl J -- Charrier, Benedicte -- Cho, Ga Youn -- Coelho, Susana M -- Collen, Jonas -- Corre, Erwan -- Da Silva, Corinne -- Delage, Ludovic -- Delaroque, Nicolas -- Dittami, Simon M -- Doulbeau, Sylvie -- Elias, Marek -- Farnham, Garry -- Gachon, Claire M M -- Gschloessl, Bernhard -- Heesch, Svenja -- Jabbari, Kamel -- Jubin, Claire -- Kawai, Hiroshi -- Kimura, Kei -- Kloareg, Bernard -- Kupper, Frithjof C -- Lang, Daniel -- Le Bail, Aude -- Leblanc, Catherine -- Lerouge, Patrice -- Lohr, Martin -- Lopez, Pascal J -- Martens, Cindy -- Maumus, Florian -- Michel, Gurvan -- Miranda-Saavedra, Diego -- Morales, Julia -- Moreau, Herve -- Motomura, Taizo -- Nagasato, Chikako -- Napoli, Carolyn A -- Nelson, David R -- Nyvall-Collen, Pi -- Peters, Akira F -- Pommier, Cyril -- Potin, Philippe -- Poulain, Julie -- Quesneville, Hadi -- Read, Betsy -- Rensing, Stefan A -- Ritter, Andres -- Rousvoal, Sylvie -- Samanta, Manoj -- Samson, Gaelle -- Schroeder, Declan C -- Segurens, Beatrice -- Strittmatter, Martina -- Tonon, Thierry -- Tregear, James W -- Valentin, Klaus -- von Dassow, Peter -- Yamagishi, Takahiro -- Van de Peer, Yves -- Wincker, Patrick -- England -- Nature. 2010 Jun 3;465(7298):617-21. doi: 10.1038/nature09016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC Universite Paris 6, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France. cock@sb-roscoff.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520714" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics ; Animals ; *Biological Evolution ; Eukaryota ; Evolution, Molecular ; Genome/*genetics ; Molecular Sequence Data ; Phaeophyta/*cytology/*genetics/metabolism ; Phylogeny ; Pigments, Biological/biosynthesis ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-19
    Description: Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for 〉10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Kruppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsui, Toshiyuki -- Leung, Danny -- Miyashita, Hiroki -- Maksakova, Irina A -- Miyachi, Hitoshi -- Kimura, Hiroshi -- Tachibana, Makoto -- Lorincz, Matthew C -- Shinkai, Yoichi -- 77805/Canadian Institutes of Health Research/Canada -- 92090/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Apr 8;464(7290):927-31. doi: 10.1038/nature08858. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA (Cytosine-5-)-Methyltransferase/deficiency/genetics/metabolism ; DNA Methylation/genetics ; Embryonic Stem Cells/*enzymology/metabolism/*virology ; Endogenous Retroviruses/*genetics ; Fibroblasts ; Gene Deletion ; *Gene Silencing ; Histone-Lysine N-Methyltransferase/deficiency/genetics/*metabolism ; Mice ; Nuclear Proteins/metabolism ; Protein Methyltransferases/deficiency/genetics/*metabolism ; Proviruses/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-15
    Description: Insulin-like growth factor 1 (IGF-1) induces skeletal muscle maturation and enlargement (hypertrophy). These responses require protein synthesis and myofibril formation (myofibrillogenesis). However, the signaling mechanisms of myofibrillogenesis remain obscure. We found that IGF-1-induced phosphatidylinositol 3-kinase-Akt signaling formed a complex of nebulin and N-WASP at the Z bands of myofibrils by interfering with glycogen synthase kinase-3beta in mice. Although N-WASP is known to be an activator of the Arp2/3 complex to form branched actin filaments, the nebulin-N-WASP complex caused actin nucleation for unbranched actin filament formation from the Z bands without the Arp2/3 complex. Furthermore, N-WASP was required for IGF-1-induced muscle hypertrophy. These findings present the mechanisms of IGF-1-induced actin filament formation in myofibrillogenesis required for muscle maturation and hypertrophy and a mechanism of actin nucleation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takano, Kazunori -- Watanabe-Takano, Haruko -- Suetsugu, Shiro -- Kurita, Souichi -- Tsujita, Kazuya -- Kimura, Sumiko -- Karatsu, Takashi -- Takenawa, Tadaomi -- Endo, Takeshi -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1536-40. doi: 10.1126/science.1197767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148390" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/*metabolism ; Animals ; COS Cells ; Cercopithecus aethiops ; Hypertrophy ; Insulin-Like Growth Factor I/*metabolism ; Mice ; Mice, Inbred ICR ; *Muscle Development ; Muscle Proteins/chemistry/*metabolism ; Muscle, Skeletal/metabolism/pathology ; Myofibrils/metabolism ; Phosphatidylinositol 3-Kinase/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; Sarcomeres/*metabolism ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-08-14
    Description: A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here, we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, which is a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and the resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Alexander E -- Ghenoiu, Cristina -- Xue, John Z -- Zierhut, Christian -- Kimura, Hiroshi -- Funabiki, Hironori -- GM075249/GM/NIGMS NIH HHS/ -- R01 GM075249/GM/NIGMS NIH HHS/ -- R01 GM075249-01/GM/NIGMS NIH HHS/ -- R01 GM075249-02/GM/NIGMS NIH HHS/ -- R01 GM075249-03/GM/NIGMS NIH HHS/ -- R01 GM075249-04/GM/NIGMS NIH HHS/ -- R01 GM075249-05/GM/NIGMS NIH HHS/ -- R01 GM075249-05S1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 8;330(6001):235-9. doi: 10.1126/science.1189505. Epub 2010 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA. akelly@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aurora Kinases ; Cell Division ; Centromere/metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes/*metabolism ; Enzyme Activation ; Histones/*metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/*metabolism ; Spindle Apparatus/metabolism ; Threonine/metabolism ; Xenopus Proteins/chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...