ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (5)
  • variation  (3)
  • American Association for the Advancement of Science (AAAS)  (5)
  • Springer  (3)
  • Springer Nature
  • 2010-2014  (3)
  • 1985-1989  (5)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 44 (1987), S. 177-185 
    ISSN: 1570-7458
    Keywords: spotted alfalfa aphid ; Therioaphis trifolii ; aphid-resistant plants ; lucerne = alfalfa ; Medicago sativa ; variation ; bioassay ; antibiosis non-preference ; inter-plant movement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Résumé L'étude de la multiplication initiale des effectifs de T. trifolii, élevés au laboratoire sur pousses de différents pieds de luzerne, a servi de test d'antibiose pour les cultures en plein champ. La distribution de l'antibiose, dans des échantillons importants de plantes appartenant à des cultivars sélectionnés pour leur résistance aux pucerons, a présenté une forme en J, c'est-à-dire que la majorité des plantes était très résistante, quelques unes apparemment sensibles, et un certain nombre intermédiaires entre ces deux extrêmes. Pour un niveau donné d'antibiose, la reproduction, la mortalité et ainsi la distribution initiale en âges dans les populations de pucerons ont été généralement identiques. La multiplication végétative de plantes présentant un gradient de résistance à l'intérieur d'un cultivar et l'utilisation d'un plan de distribution des boutures ont permis l'étude de ce qui semble être l'effet de l'hétérogénéité spatiale sur la résistance des cultures aux attaques de pucerons. La simulation d'une invasion de la culture par les pucerons en plaçant des adulte sur toutes les boutures d'un rang ne pouvait donner une explication de la croissance de la population que si les pucerons se déplacaient le long du rang pour découvrir et exploiter les pieds les plus sensibles. Une distribution par taches, comme on peut l'envisager dans un champ, ne devrait pas gêner les pucerons, car bien que les mouvements d'évasion soient stimulés par les niveaux de résistance élevés (de non-préférence), on peut en déduire que les pucerons se déplaceront sur des plantes très résistantes, eventuellement pour atteindre des plantes moins résistantes placées derriere.
    Notes: Abstract Initial population growth of spotted alfalfa aphid reared on shoots cut from individual lucerne plants, was tested and used as a realistic bioassay of antibiosis. Within cultivars selected for aphid-resistance there was a J-shaped distribution of antibiosis between plants of the crop, the majority being highly resistant, a few apparently susceptible and a proportion partly-resistant. For a given level of antibiosis, reproduction, mortality and thus initial age distribution of aphid populations were generally similar. Vegetative cloning of plants from the range of resistance available in a cultivar has allowed studies of the likely effect of spatial variation of resistance in crops on aphid infestations, using experimental arrays of cut shoots. Simulation of aphid invasion of crops by the placement of adults on all shoots of an array gave results explicable only if the aphids moved through the array to find and breed on the more susceptible plants. A patchy arrangement of these, as might be expected in a field crop, would not hinder the aphids, for although movement off a plant is stimulated by higher resistance (non-preference) levels, it was inferred that aphids will move onto higher resistance plants, eventually to reach lower resistance plants beyond.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: amylase ; chicken ; variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Amylase allozymic and activity variation was studied in three flocks of chickens (Gallus domesticus). Individuals from one flock were studied to assess the effects of sex, tissue, and genotype on amylase activity. Additionally, the allozymes were purified and their specific activities compared. Variation was observed within and among the flocks. Two alleles were found to be segregating in the flocks, one flock being polymorphic and the other two monomorphic. Mean amylase activities among the three flocks were significantly different. The relationship of this activity variation to regulatory variation is discussed. There were no significant effects of sex or genotype on amylase activity and, in most cases, no correlation between activities in the various tissues. However, in heterozygotes one of the alloamylases had much lower activity than the other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4927
    Keywords: amylase ; chicken ; variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Amylase allozymic and activity variation was studied in three flocks of chickens (Gallus domesticus). Individuals from one flock were studied to assess the effects of sex, tissue, and genotype on amylase activity. Additionally, the allozymes were purified and their specific activities compared. Variation was observed within and among the flocks. Two alleles were found to be segregating in the flocks, one flock being polymorphic and the other two monomorphic. Mean amylase activities among the three flocks were significantly different. The relationship of this activity variation to regulatory variation is discussed. There were no significant effects of sex or genotype on amylase activity and, in most cases, no correlation between activities in the various tissues. However, in heterozygotes one of the alloamylases had much lower activity than the other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Katherine J -- Kennedy, Brian K -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1578-9. doi: 10.1126/science.1221365.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Buck Institute for Research on Aging, Novato, CA 94945, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461595" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Insulin Resistance ; *Longevity ; Male ; Sirolimus/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-25
    Description: CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Sacha, Jonah B -- Hughes, Colette M -- Ford, Julia C -- Burwitz, Benjamin J -- Scholz, Isabel -- Gilbride, Roxanne M -- Lewis, Matthew S -- Gilliam, Awbrey N -- Ventura, Abigail B -- Malouli, Daniel -- Xu, Guangwu -- Richards, Rebecca -- Whizin, Nathan -- Reed, Jason S -- Hammond, Katherine B -- Fischer, Miranda -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Edlefsen, Paul T -- Nelson, Jay A -- Lifson, Jeffrey D -- Fruh, Klaus -- Picker, Louis J -- P01 AI094417/AI/NIAID NIH HHS/ -- P51 OD 011092/OD/NIH HHS/ -- R01 AI059457/AI/NIAID NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 May 24;340(6135):1237874. doi: 10.1126/science.1237874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Cytokines/immunology ; Cytomegalovirus/genetics/*immunology ; Epitopes, T-Lymphocyte/*immunology ; Female ; Genetic Vectors/genetics/*immunology ; Histocompatibility Antigens Class II/immunology ; Humans ; Macaca mulatta ; Male ; Membrane Glycoproteins/genetics ; SAIDS Vaccines/administration & dosage/*immunology ; Viral Envelope Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-13
    Description: Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory receptor found on immune cells. The consequences of mutations in CTLA4 in humans are unknown. We identified germline heterozygous mutations in CTLA4 in subjects with severe immune dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3(+) regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration of target organs. Patients also exhibited progressive loss of circulating B cells, associated with an increase of predominantly autoreactive CD21(lo) B cells and accumulation of B cells in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371526/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371526/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuehn, Hye Sun -- Ouyang, Weiming -- Lo, Bernice -- Deenick, Elissa K -- Niemela, Julie E -- Avery, Danielle T -- Schickel, Jean-Nicolas -- Tran, Dat Q -- Stoddard, Jennifer -- Zhang, Yu -- Frucht, David M -- Dumitriu, Bogdan -- Scheinberg, Phillip -- Folio, Les R -- Frein, Cathleen A -- Price, Susan -- Koh, Christopher -- Heller, Theo -- Seroogy, Christine M -- Huttenlocher, Anna -- Rao, V Koneti -- Su, Helen C -- Kleiner, David -- Notarangelo, Luigi D -- Rampertaap, Yajesh -- Olivier, Kenneth N -- McElwee, Joshua -- Hughes, Jason -- Pittaluga, Stefania -- Oliveira, Joao B -- Meffre, Eric -- Fleisher, Thomas A -- Holland, Steven M -- Lenardo, Michael J -- Tangye, Stuart G -- Uzel, Gulbu -- 5R01HL113304-01/HL/NHLBI NIH HHS/ -- AI061093/AI/NIAID NIH HHS/ -- AI071087/AI/NIAID NIH HHS/ -- AI095848/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- P01 AI061093/AI/NIAID NIH HHS/ -- R01 AI071087/AI/NIAID NIH HHS/ -- R01 HL113304/HL/NHLBI NIH HHS/ -- R21 AI095848/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1623-7. doi: 10.1126/science.1255904. Epub 2014 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA. tfleishe@cc.nih.gov lenardo@nih.gov guzel@niaid.nih.gov. ; Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA. tfleishe@cc.nih.gov lenardo@nih.gov guzel@niaid.nih.gov. ; Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. tfleishe@cc.nih.gov lenardo@nih.gov guzel@niaid.nih.gov. ; Immunology and Immunodeficiency Group, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. St. Vincent's Clinical School Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia. ; Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA. ; Immunology and Immunodeficiency Group, Immunology Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. ; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA. ; Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA. ; NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. ; Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA. ; Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA. ; Radiology and Imaging and Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA. ; Clinical Research Directorate, Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. ; Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. ; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA. ; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA. ; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA. Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA. ; Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA. ; Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA 10217, USA. ; Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. ; Merck Research Laboratories, Merck & Co., Boston, MA 02130, USA. ; Instituto de Medicina Integral Prof. Fernando Figueira-IMIP, 50070 Recife-PE, Brazil. ; NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. ; Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. tfleishe@cc.nih.gov lenardo@nih.gov guzel@niaid.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25213377" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; B-Lymphocytes/immunology ; CTLA-4 Antigen/*genetics ; Female ; Forkhead Transcription Factors/immunology ; *Germ-Line Mutation ; *Haploinsufficiency ; Humans ; Immune System Diseases/*genetics ; Immunity/*genetics ; Male ; Mice ; Mice, Mutant Strains ; Pedigree ; T-Lymphocytes, Regulatory/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-12-04
    Description: The inherited genetic defect in adenomatous polyposis has been localized to a small region on the long arm of chromosome 5. Sixteen DNA marker loci were used to construct a linkage map of the chromosome. When five kindreds segregating a gene for adenomatous polyposis coli were characterized with a number of the markers, significant linkage was found between one marker and the disease gene. Linkage analysis determined the location of the defective gene within a primary genetic map of chromosome 5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leppert, M -- Dobbs, M -- Scambler, P -- O'Connell, P -- Nakamura, Y -- Stauffer, D -- Woodward, S -- Burt, R -- Hughes, J -- Gardner, E -- CA40641/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1987 Dec 4;238(4832):1411-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Human Genetics, University of Utah Medical Center, Salt Lake City 84132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3479843" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; *Chromosomes, Human, Pair 5 ; Colonic Polyps/*genetics ; Female ; Gardner Syndrome/genetics ; *Genes ; Genetic Markers ; Humans ; Lod Score ; Male ; Neoplasms, Multiple Primary/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-12-23
    Description: Hypocalcemic vitamin D-resistant rickets is a human genetic disease resulting from target organ resistance to the action of 1,25-dihydroxyvitamin D3. Two families with affected children homozygous for this autosomal recessive disorder were studied for abnormalities in the intracellular vitamin D receptor (VDR) and its gene. Although the receptor displays normal binding of 1,25-dihydroxyvitamin D3 hormone, VDR from affected family members has a decreased affinity for DNA. Genomic DNA isolated from these families was subjected to oligonucleotide-primed DNA amplification, and each of the nine exons encoding the receptor protein was sequenced for a genetic mutation. In each family, a different single nucleotide mutation was found in the DNA binding domain of the protein; one family near the tip of the first zinc finger (Gly----Asp) and one at the tip of the second zinc finger (Arg----Gly). The mutant residues were created in vitro by oligonucleotide directed point mutagenesis of wild-type VDR complementary DNA and this cDNA was transfected into COS-1 cells. The produced protein is biochemically indistinguishable from the receptor isolated from patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, M R -- Malloy, P J -- Kieback, D G -- Kesterson, R A -- Pike, J W -- Feldman, D -- O'Malley, B W -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2849209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcitriol/metabolism ; Cell Line ; Cell Line, Transformed ; Codon ; DNA/genetics/metabolism ; Exons ; Female ; Gene Amplification ; Homozygote ; Humans ; Hypocalcemia/*genetics ; Immunoblotting ; Male ; Molecular Sequence Data ; *Mutation ; Receptors, Calcitriol ; Receptors, Steroid/*genetics/metabolism ; Rickets/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...