ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 87-90 
    ISSN: 1432-0789
    Keywords: Nitrification ; Tropical soil ; Subtropical soil ; Nitrifying population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrification was measured in five different soils (slate alluvial soil, sandstone shale alluvial soil, sandstone shale and slate alluvial soil, red soil, and Taiwan clay). In these soils different lag periods were recorded before the onset of nitrification. Nitrifying activity was highest in sandstone shale alluvial soil and the lowest in acidic red soil. A part from those in the red soil, the numbers of nitrifying bacteria detected were all higher than numbers reported in temperate soils. However, there were no clear relationships between the numbers of nitrifying bacteria and the rate of nitrification in these soils. When soil cores were incubated for 3 weeks, no NO inf2 sup- or NO inf3 sup- was defected in the slate alluvial soil. This was ascribed to denitrification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 249-252 
    ISSN: 1432-0789
    Keywords: N fertilizer requirement ; Nitrification ; Zea mays ; N mineralization ; Lime ; Soil pH ; Nitrate-N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The application of NH inf4 su+ -based fertilizers to soils slowly lowers soil pH, which in turn decreases nitrification rates. Under these conditions nitrification and N mineralization may be reduced. We therefore investigated the impact of liming fertilizer-acidified soils on nitrification and N mineralization. Soil samples were collected in the spring of 1987 from a field experiment, initiated in 1980, investigating N, tillage, and residue management under continuous corn (Zea mays L.). The pH values (CaCl2) in the surface soil originally ranged from 6.0 to 6.5. After 6 years the N fertilizer and tillage treatments had reduced the soil pH to values that ranged between 3.7 and 6.2. Incubation treatments included two liming rates (unlimed or SMP-determined lime requirement), two 15N-labeled fertilizer rates (0 or 20 g N m-2), and three replicates. Field-moist soil was mixed with lime and packed by original depth into columns. Labeled-15N ammonium sulfate in solution was surface-applied and columns were leached with 1.5 pore volumes of deionized water every 7 days over a 70-day period. Nitrification occurred in all pH treatments, suggesting that a ferilizer-acidified soil must contain a low-pH tolerant nitrifier population. Liming increased soil pH values (CaCl2) from 3.7 to 6.2, and increased by 10% (1.5 g N m-2) the amount of soil-derived NO3 --N that moved through the columns. This increase was the result of enhanced movement of soil-derived NO3 --N through the columns during the first 14 days of incubation. After the initial 14-day period, the limed and unlimed treatments had similar amounts of soil N leaching through the soil columns. Lime increased the nitrification rates and stimulated the early movement of fertilizer-derived NO3 --N through the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 243-248 
    ISSN: 1432-0789
    Keywords: Nitrification ; Mineralization ; Immobilization ; Forest floor ; Subarctic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A knowledge of the nutrient dynamics that occur with land use changes, e.g., in clearing forests for farmland, is useful in choosing the most efficient soil and fertilizer management practices. To determine net in situ P and N mineralization and nitrification rates of forest floor materials and their nutrient value for agricultural crops, plastic bags containing different materials (moss, O horizon, and A horizon) collected from a subarctic black spruce (Picea mariana Mill.) forest were incubated for 2 years in their respective forest horizons and at 7.5 cm depth in a nearby fallow field. Net amounts of P and N mineralized were highest in moss and were similar in forest and field when the temperature and moisture content were similar, but smaller in forest when the water content was higher. Net nitrification was negligible in O and A horizon material but significant in moss during the 2nd year, occurring sooner and producing higher NO inf3 sup- levels in the field (171 mg ha-1) than in the forest (13 mg ha-1). Moss P and N mineralization rates were correlated in the fallow field. Temperature, moisture content, and substrate quality were important factors controlling P and N dynamics of forest floor materials in a subarctic fallow field and native forest. In subarctic regions, incorporation and mineralization of forest floor materials could provide an early source of N and P (70 and 17 kg ha-1, respectively) for succeeding agricultural crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 309-313 
    ISSN: 1432-0789
    Keywords: Herbicides ; Urea hydrolysis ; Nitrification ; Ammonia toxicity ; Nitrification inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of 5 and 50 mg active ingredient kg-1 soil of nine preemergence and nine postemergence herbicides on transformations of urea N in soil was studied in samples of two coarse-textured and two fine-textured soils incubated aerobically at 20°C. The effects of each herbicide on soil urea transformations was measured by determining the amounts of urea hydrolyzed and the amounts of NO inf3 sup- and NO inf2 sup- produced at various times after treatment with urea. Applied at the rate of 5 mg active ingredient kg-1 soil, none of the herbicides retarded urea hydrolysis in the four soils used, but four of the postemergence herbicides (acifluorfen, diclofop methyl, fenoxaprop ethyl) retarded urea hydrolysis in the two coarse-textured soils. All the herbicides tested except siduron retarded nitrification in the two coarse-textured soils when applied at 50 mg of urea N active ingredient kg-1 soil, and fenoxaprop ethyl and tridiphane markedly retarded nitrification of urea N in all four of the soils when applied at this rate. One-way analysis of variance and correlation analyses indicated that the inhibitory effects of the 18 herbicides tested on nitrification of urea N in soil increased with a decrease in the organic-matter content and an increase in the sand content of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 1-6 
    ISSN: 1432-0789
    Keywords: Ammonium ; Denitrification ; Nitrification ; Nitrous oxide ; Organic carbon ; Acetylene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Nitrification inhibitors ; 15N balance ; Nitrous oxide ; Greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with ∼ 43% for the nitrapyrin and control treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...