ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering  (246)
  • Wiley-Blackwell  (246)
  • Elsevier
  • Oxford University Press
  • 2010-2014
  • 1990-1994  (246)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 1279-1298 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An error estimate for the finite element method is presented in this paper. The error is identified as the response to a set of residual forces, and a complementary analysis provides an upper bound estimate of the global energy of the error. The inequality proposed by Babuška and Miller1 is then employed to bound the error in stress and displacement at a point. The formula is derived for two-dimensional elasticity, but the procedure is general; and can be applied to three-dimensional and other problems. Numerical experiments using the procedure are carried out and the results are given for the four-node bilinear compatible element and plane stress.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 34 (1992), S. 117-164 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In Parts I to V of the present work, the formulation and finite element implementation of a non-linear stress resultant shell model are considered in detail. This paper is concerned with the extension of these results to incorporate completely general non-linear dynamic response. Of special interest here is the dynamics of very flexible shells undergoing large overall motion which conserves the total linear and angular momentum and, for the Hamiltonian case, the total energy. A main goal of this paper is the design of non-linear time-stepping algorithms, and the construction of finite element interpolations, which preserve exactly these fundamental constants of motion. It is shown that only a very special class of algorithms, namely a formulation of the mid-point rule in conservation form, exactly preserves the total linear and angular momentum. For the Hamiltonian case, a somewhat surprising result is proved: regardless of the degree of non-linearity in the stored-energy function, a generalized mid-point rule algorithm always exists which exactly conserves energy The conservation properties of a time-stepping algorithm need not, and in general will not, be preserved by the spatial discretization. Precise conditions which ensure preservation of these conservation properties are derived. A number of numerical simulations are presented which illustrate the exact conservation properties of the proposed methodology.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 9 (1993), S. 917-924 
    ISSN: 1069-8299
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The reduction of stress concentration around a circular hole in a dynamically loaded plate by introducing auxiliary holes around the original hole is studied numerically. The solution of this plane stress problem is carried out in the Laplace transformed domain with the aid of the boundary-element method, and subsequently the time domain response is obtained by numerically inverting the transformed solution. Numerical examples are presented which demonstrate a stress reduction as high as 18 per pent by the introduction of two auxiliary holes in the loading direction for the uniaxial case.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 10 (1994), S. 81-87 
    ISSN: 1069-8299
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Dynamic stress intensity factors of cracked linear viscolastic solids under conditions of plane stress are computed by the boundary-element method in conjunction with the numerical Laplace transform and the correspondence principle of linear viscoelasticity. Quadratic isoparametric conventional and quarter-point boundary elements are employed. The multidomain approach is used in cases where symmetry cannot be invoked. Dynamic stress intensity factors are computed for cracked viscoelastic rectangular plates subjected to suddenly applied loads, and comparisons are made against results obtained by other numerical methods.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 31 (1991), S. 837-857 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The finite strip method is extended to the non-linear, static analysis of cylindrical shells. Large deflection effects are incorporated via first-order non-linearities in the strain-displacement relations, and material non-linearities are included via the von Mises yield criteria and associated flow rule. Numerical results are presented for various example problems including the diaphragm supported cylindrical shell-roof problem, an axisymmetric cylindrical shell loaded by radial pressure, the cylindrical shell-roof problem with clamped curved ends and a pressure loaded cylindrical panel clamped all round. The results are compared with known results from analytical and/or finite element analyses. The results indicate that a single bending mode in the strip direction is sufficient in most cases to yield engineering accuracy for preliminary design purposes.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 32 (1991), S. 79-101 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Issues related to the constitutive modelling and computational treatment of strain localization are examined for the class of rate independent solids. The significance of the constitutive description in localization problems is emphasized and constitutive models currently employed are briefly reviewed. Difficulties faced in finite element analysis, fundamentally associated with the loss of ellipticity of the related boundary value problem, and present trends in the computational treatment are discussed and illustrated by numerical examples.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 16 (1992), S. 887-890 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 18 (1994), S. 279-282 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 16 (1992), S. 425-437 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A method for generating both equipotential lines and streamlines directly based upon nodal potentials and bilinear shape functions is presented. The method involves post-processing a finite element (FE) solution utilizing typical four-node isoparametric quadrilateral elements. The application of the method can be important in the interpretation of FE analysis results, especially when inhomogeneous, anisotropic, unconfined or/and other complicated conditions exist. Compared with conventional techniques to generate flow nets which depend upon both the potential and stream functions, the method presented is simpler and more powerful.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 373-400 
    ISSN: 0271-2091
    Keywords: Comparison ; Experimental ; Simulation ; Planar entry flow ; Viscoelastic ; Convergence ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The goal of this research was to determine whether there is any interaction between the type of constitutive equation used and the degree of mesh refinement, as well as how the type of constitutive equation might affect the convergence and quality of the solution, for a planar 4:1 contraction in the finite eiement method. Five constitutive equations were used in this work: the Phan-Thien-Tanner (PTT), Johnson-Segalman (JS), White-Metzner (WM), Leonov-like and upper convected Maxwell (UCM) models. A penalty Galerkin finite element technique was used to solve the system of non-linear differential equations. The constitutive equations were fitted to the steady shear viscosity and normal stress data for a polystyrene melt. In general it was found that the convergence limit based on the Deborah number De and the Weissenberg number We varied from model to model and from mesh to mesh. From a practical point of view it was observed that the wall shear stress in the downstream region should also be indicated at the point where convergence is lost, since this parameter reflects the throughput conditions. Because of the dependence of convergence on the combination of mesh size and constitutive equation, predictions of the computations were compared with birefringence data obtained for the same polystyrene melt flowing through a 4:1 planar contraction. Refinement in the mesh led to better agreement between the predictions using the PTT model and flow birefringence, but the oscillations became worse in the corner region as the mesh was further refined, eventually leading to the loss of convergence of the numerical algorithm. In comparing results using different models at the same wall shear stress conditions and on the same mesh, it was found that the PTT model gave less overshoot of the stresses at the re-entrant corner. Away from the corner there were very small differences between the quality of the solutions obtained using different models. All the models predicted solutions with oscillations. However, the values of the solutions oscillated around the experimental birefringence data, even when the numerical algorithm would not converge. Whereas the stresses are predicted to oscillate, the streamlines and velocity field remained smooth. Predictions for the existence of vortices as well as for the entrance pressure loss (ΔPent) varied from model to model. The UCM and WM models predicted negative values for ΔPent.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...