ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (6)
  • *Light
  • Burkard sporetrap
  • Nature Publishing Group (NPG)  (6)
  • 2010-2014  (6)
  • 1995-1999
  • 1
    Publication Date: 2013-06-28
    Description: The activation-induced cytidine deaminase (AID; also known as AICDA) enzyme is required for somatic hypermutation and class switch recombination at the immunoglobulin locus. In germinal-centre B cells, AID is highly expressed, and has an inherent mutator activity that helps generate antibody diversity. However, AID may also regulate gene expression epigenetically by directly deaminating 5-methylcytosine in concert with base-excision repair to exchange cytosine. This pathway promotes gene demethylation, thereby removing epigenetic memory. For example, AID promotes active demethylation of the genome in primordial germ cells. However, different studies have suggested either a requirement or a lack of function for AID in promoting pluripotency in somatic nuclei after fusion with embryonic stem cells. Here we tested directly whether AID regulates epigenetic memory by comparing the relative ability of cells lacking AID to reprogram from a differentiated murine cell type to an induced pluripotent stem cell. We show that Aid-null cells are transiently hyper-responsive to the reprogramming process. Although they initiate expression of pluripotency genes, they fail to stabilize in the pluripotent state. The genome of Aid-null cells remains hypermethylated in reprogramming cells, and hypermethylated genes associated with pluripotency fail to be stably upregulated, including many MYC target genes. Recent studies identified a late step of reprogramming associated with methylation status, and implicated a secondary set of pluripotency network components. AID regulates this late step, removing epigenetic memory to stabilize the pluripotent state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762466/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Ritu -- DiMenna, Lauren -- Schrode, Nadine -- Liu, Ting-Chun -- Franck, Philipp -- Munoz-Descalzo, Silvia -- Hadjantonakis, Anna-Katerina -- Zarrin, Ali A -- Chaudhuri, Jayanta -- Elemento, Olivier -- Evans, Todd -- AI072194/AI/NIAID NIH HHS/ -- HL056182/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 HD052115/HD/NICHD NIH HHS/ -- R37 HL056182/HL/NHLBI NIH HHS/ -- T32 AI007621/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Aug 1;500(7460):89-92. doi: 10.1038/nature12299. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Dedifferentiation/genetics ; Cellular Reprogramming/genetics ; Cytidine Deaminase/genetics/*metabolism ; Epigenesis, Genetic/*genetics ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Male ; Mice ; Pluripotent Stem Cells/*cytology/enzymology/*metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-14
    Description: Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sousa-Victor, Pedro -- Gutarra, Susana -- Garcia-Prat, Laura -- Rodriguez-Ubreva, Javier -- Ortet, Laura -- Ruiz-Bonilla, Vanessa -- Jardi, Merce -- Ballestar, Esteban -- Gonzalez, Susana -- Serrano, Antonio L -- Perdiguero, Eusebio -- Munoz-Canoves, Pura -- England -- Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Buck Institute for Research on Aging, Novato, California 94945, USA. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]. ; Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain. ; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain. ; Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522534" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aging/*metabolism ; Animals ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/*metabolism ; E2F1 Transcription Factor/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Progeria/metabolism/pathology ; Regeneration ; Rejuvenation ; Retinoblastoma Protein/metabolism ; Satellite Cells, Skeletal Muscle/*cytology/*metabolism ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hussein, Samer M I -- Puri, Mira C -- Tonge, Peter D -- Benevento, Marco -- Corso, Andrew J -- Clancy, Jennifer L -- Mosbergen, Rowland -- Li, Mira -- Lee, Dong-Sung -- Cloonan, Nicole -- Wood, David L A -- Munoz, Javier -- Middleton, Robert -- Korn, Othmar -- Patel, Hardip R -- White, Carl A -- Shin, Jong-Yeon -- Gauthier, Maely E -- Le Cao, Kim-Anh -- Kim, Jong-Il -- Mar, Jessica C -- Shakiba, Nika -- Ritchie, William -- Rasko, John E J -- Grimmond, Sean M -- Zandstra, Peter W -- Wells, Christine A -- Preiss, Thomas -- Seo, Jeong-Sun -- Heck, Albert J R -- Rogers, Ian M -- Nagy, Andras -- MOP102575/Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Dec 11;516(7530):198-206. doi: 10.1038/nature14046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands [2] Netherlands Proteomics Centre, Padualaan 8, 3584CH Utrecht, The Netherlands. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada. ; Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia. ; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Genome Discovery Unit, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra) 2601, ACT, Australia. ; 1] Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada [2] The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto M5S 3E1, Canada. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA. ; Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto M5S-3G9, Canada. ; 1] Gene and Stem Cell Therapy Program and Bioinformatics Lab, Centenary Institute, Camperdown 2050, NSW, Australia &Sydney Medical School, 31 University of Sydney 2006, New South Wales, Australia [2] Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, New South Wales, Australia. ; 1] Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia [2] College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. ; 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), ACT 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia. ; 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences and Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada. ; 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5S 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25503233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cellular Reprogramming/*genetics ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Methylation ; Embryonic Stem Cells/cytology/metabolism ; Epistasis, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Genome/*genetics ; Histones/chemistry/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Internet ; Mice ; Proteome/genetics ; Proteomics ; RNA, Long Noncoding/genetics ; Transcription Factors/genetics/metabolism ; Transcription, Genetic/genetics ; Transcriptome/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-01
    Description: Atopic dermatitis is a chronic inflammatory skin disease that affects 15-30% of children and approximately 5% of adults in industrialized countries. Although the pathogenesis of atopic dermatitis is not fully understood, the disease is mediated by an abnormal immunoglobulin-E immune response in the setting of skin barrier dysfunction. Mast cells contribute to immunoglobulin-E-mediated allergic disorders including atopic dermatitis. Upon activation, mast cells release their membrane-bound cytosolic granules leading to the release of several molecules that are important in the pathogenesis of atopic dermatitis and host defence. More than 90% of patients with atopic dermatitis are colonized with Staphylococcus aureus in the lesional skin whereas most healthy individuals do not harbour the pathogen. Several staphylococcal exotoxins can act as superantigens and/or antigens in models of atopic dermatitis. However, the role of these staphylococcal exotoxins in disease pathogenesis remains unclear. Here we report that culture supernatants of S. aureus contain potent mast-cell degranulation activity. Biochemical analysis identified delta-toxin as the mast cell degranulation-inducing factor produced by S. aureus. Mast cell degranulation induced by delta-toxin depended on phosphoinositide 3-kinase and calcium (Ca(2+)) influx; however, unlike that mediated by immunoglobulin-E crosslinking, it did not require the spleen tyrosine kinase. In addition, immunoglobulin-E enhanced delta-toxin-induced mast cell degranulation in the absence of antigen. Furthermore, S. aureus isolates recovered from patients with atopic dermatitis produced large amounts of delta-toxin. Skin colonization with S. aureus, but not a mutant deficient in delta-toxin, promoted immunoglobulin-E and interleukin-4 production, as well as inflammatory skin disease. Furthermore, enhancement of immunoglobulin-E production and dermatitis by delta-toxin was abrogated in Kit(W-sh/W-sh) mast-cell-deficient mice and restored by mast cell reconstitution. These studies identify delta-toxin as a potent inducer of mast cell degranulation and suggest a mechanistic link between S. aureus colonization and allergic skin disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakamura, Yuumi -- Oscherwitz, Jon -- Cease, Kemp B -- Chan, Susana M -- Munoz-Planillo, Raul -- Hasegawa, Mizuho -- Villaruz, Amer E -- Cheung, Gordon Y C -- McGavin, Martin J -- Travers, Jeffrey B -- Otto, Michael -- Inohara, Naohiro -- Nunez, Gabriel -- R01 AR059688/AR/NIAMS NIH HHS/ -- R01AR059688/AR/NIAMS NIH HHS/ -- R01HL062996/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Nov 21;503(7476):397-401. doi: 10.1038/nature12655. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/*metabolism/pharmacology ; Calcium Signaling/drug effects ; *Cell Degranulation/drug effects ; Culture Media, Conditioned/pharmacology ; Dermatitis, Atopic/immunology/metabolism/*microbiology/pathology ; Female ; Immunoglobulin E/biosynthesis/immunology ; Inflammation/immunology/metabolism/microbiology/pathology ; Interleukin-4/immunology ; Intracellular Signaling Peptides and Proteins/metabolism ; Male ; Mast Cells/*cytology/drug effects ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proto-Oncogene Proteins c-kit/genetics/metabolism ; Staphylococcus aureus/metabolism/*pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-29
    Description: Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131725/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131725/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wahlquist, Christine -- Jeong, Dongtak -- Rojas-Munoz, Agustin -- Kho, Changwon -- Lee, Ahyoung -- Mitsuyama, Shinichi -- van Mil, Alain -- Park, Woo Jin -- Sluijter, Joost P G -- Doevendans, Pieter A F -- Hajjar, Roger J -- Mercola, Mark -- HHSN268201000045C/HL/NHLBI NIH HHS/ -- HHSN26820100045C/PHS HHS/ -- P01 HL098053/HL/NHLBI NIH HHS/ -- P01HL098053/HL/NHLBI NIH HHS/ -- P20 HL100396/HL/NHLBI NIH HHS/ -- P20HL100396/HL/NHLBI NIH HHS/ -- P30 AR061303/AR/NIAMS NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P30AR061303/AR/NIAMS NIH HHS/ -- P30CA030199/CA/NCI NIH HHS/ -- P50 HL112324/HL/NHLBI NIH HHS/ -- P50HL112324/HL/NHLBI NIH HHS/ -- R01 HL088434/HL/NHLBI NIH HHS/ -- R01 HL093183/HL/NHLBI NIH HHS/ -- R01 HL108176/HL/NHLBI NIH HHS/ -- R01 HL113601/HL/NHLBI NIH HHS/ -- R01HL088434/HL/NHLBI NIH HHS/ -- R01HL093183/HL/NHLBI NIH HHS/ -- R01HL108176/HL/NHLBI NIH HHS/ -- R01HL113601/HL/NHLBI NIH HHS/ -- S10 RR021084/RR/NCRR NIH HHS/ -- England -- Nature. 2014 Apr 24;508(7497):531-5. doi: 10.1038/nature13073. Epub 2014 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [2]. ; 1] The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2]. ; Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA. ; The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cardiology, University Medical Center Utrecht and ICIN Netherlands Heart Institute, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, The Netherlands. ; Global Research Laboratory, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea. ; Department of Cardiology, University Medical Center Utrecht and ICIN Netherlands Heart Institute, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Dependovirus/genetics ; Disease Models, Animal ; HEK293 Cells ; Heart/drug effects/physiology/physiopathology ; Heart Failure/*genetics/*therapy ; Humans ; Kinetics ; Male ; Mice ; MicroRNAs/analysis/*antagonists & inhibitors/genetics/metabolism ; Myocardial Contraction/*drug effects ; Myocardium/metabolism ; Myocytes, Cardiac/metabolism ; Oligonucleotides, Antisense/genetics/metabolism/pharmacology ; RNA, Messenger/genetics/metabolism ; Sarcoplasmic Reticulum/metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics/metabolism ; Survival Analysis ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-31
    Description: There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geng, Jia -- Kim, Kyunghoon -- Zhang, Jianfei -- Escalada, Artur -- Tunuguntla, Ramya -- Comolli, Luis R -- Allen, Frances I -- Shnyrova, Anna V -- Cho, Kang Rae -- Munoz, Dayannara -- Wang, Y Morris -- Grigoropoulos, Costas P -- Ajo-Franklin, Caroline M -- Frolov, Vadim A -- Noy, Aleksandr -- England -- Nature. 2014 Oct 30;514(7524):612-5. doi: 10.1038/nature13817.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA [2] School of Natural Sciences, University of California, Merced, California 95340, USA [3] The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA [2] The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [3] Mechanical Engineering Department, University of California, Berkeley, California 94720, USA. ; School of Natural Sciences, University of California, Merced, California 95340, USA. ; Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain. ; 1] Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA [2] The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [3] National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Biology and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; Mechanical Engineering Department, University of California, Berkeley, California 94720, USA. ; 1] The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [3] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain [2] Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25355362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; CHO Cells ; Cell Membrane/*chemistry/*metabolism ; Cell Survival ; Cricetulus ; DNA/metabolism ; HEK293 Cells ; Humans ; Ion Channels/metabolism ; Lipid Bilayers/*chemistry/*metabolism ; Liposomes ; *Nanotubes, Carbon/ultrastructure ; Porins/chemistry/*metabolism ; *Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...