ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Other Sources  (1,287)
  • Lunar and Planetary Science and Exploration  (1,287)
  • 2010-2014  (435)
  • 2000-2004  (852)
Collection
  • Articles
  • Other Sources  (1,287)
Source
Years
Year
  • 1
    Publication Date: 2019-08-26
    Description: We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19235 , Planetary and Space Science; 103; 2-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual "dark ribbon" material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19233 , Icarus Special Issue: The Geology of Vesta; 244; 89-103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN13563 , Annual Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: On 12-Dec-2011, the Dawn spacecraft commenced low altitude mapping of the giant asteroid, 4 Vesta (264-km mean radius). Dawn's roughly circular, polar, low altitude mapping orbit (LAMO) has a mean radius of 470 km, placing the spacecraft within about 210 km of Vesta's surface. At these altitudes, Dawn s Gamma Ray and Neutron Detector (GRaND) is sensitive to Vesta's elemental com-position (Fig. 1). GRaND will acquire data in LAMO for up to 16 weeks, which is sufficient to map the elemental composition of the entire surface of Vesta. The timing of LAMO enables us to report the first results of our geochemistry investigation at this conference. In this abstract, we present an overview of our initial observations, based on data acquired at high altitude and during the first weeks of LAMO. GRaND overview. A detailed description of the GRaND instrument, science objectives and prospective results is given in [1]. At low altitudes, GRaND is sensitive to gamma rays and neutrons produced by cosmogenic nuclear reactions and radioactive decay occurring within the top few decimeters of the surface and on a spatial scale of a few hundred kilometers. From these nuclear emissions, the abundance of several major- and minor-elements, such as Fe, Mg, Si, K, and Th can be determined. Assuming the howardite, eucrite, and diogenite (HED) meteorites are representative of Vesta s crustal composition [2], then GRaND will be able to map the mixing ratios of whole-rock HED end-members, enabling the determination of the relative proportions of basaltic eucrite, cumulate eucrite, and diogenite as well as the proportions of mafic and plagioclase minerals [1,3]. GRaND will also search for compositions not well-represented in the meteorite collection, such as evolved, K-rich lithologies [4], and outcrops of olivine from Vesta s mantle or igneous intrusions in major impact basins [5]. The search for a possible mesosiderite source region is described in [6]. GRaND will globally map the abundance of H, providing constraints on the delivery of H by solar wind and the infall of carbonaceous chondrite materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25720 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Dawn?s Gamma Ray and Neutron Detector (GRaND) successfully completed Low Altitude Mapping Orbit (LAMO) at Vesta. Over four months were spent acquiring data in a 460-km radius orbit around Vesta (265-km mean radius). In LAMO, strong signatures from Vesta were observed for gamma rays and neutrons. We present preliminary abundances, detection limits, and global maps of the elemental composition of Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26600 , 75the Annual Meeting ofthe Meteorical Society meeting; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these volatiles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31332 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The NASA Planetary Science Summer School (PSSS) at JPL offers graduate students and young professionals a unique opportunity to learn about the mission design process. Program participants select and design a mission based on a recent NASA Science Mission Directorate Announcement of Opportunity (AO). Starting with the AO, in this case the 2009 New Frontiers AO, participants generate a set of science goals and develop a early mission concept to accomplish those goals within the constraints provided. As part of the 2010 NASA PSSS, the Ganymede Interior, Surface, and Magnetosphere Observer (GISMO) team developed a preliminary satellite design for a science mission to Jupiter's moon Ganymede. The science goals for this design focused on studying the icy moon's magnetosphere, internal structure, surface composition, geological processes, and atmosphere. By the completion of the summer school an instrument payload was selected and the necessary mission requirements were developed to deliver a spacecraft to Ganymede that would accomplish the defined science goals. This poster will discuss those science goals, the proposed spacecraft and the proposed mission design of this New Frontiers class Ganymede observer.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) Curiosity rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAMs quadrupole mass spectrometer (QMS) and draw com-parisons to RN.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30544 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 24, 2014; The Woodland, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5690; 1582-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Theoretical and observational progress in studies of Saturn's ring system since the mid-1980s is reviewed, focussing on advances in configuration and dynamics, composition and size distribution, dust and meteoroids, interactions of the rings with the planet and the magnetosphere, and relationships between the rings and various satellites. The Cassini instrument suite of greatest relevance to ring studies is also summarized, emphasizing how the individual instruments might work together to solve outstanding problems. The Cassini tour is described from the standpoint of ring studies, and major ring science goals are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Decadal Panel on Outer Planets; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...