ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-03
    Description: The efficacy and safety of biological molecules in cancer therapy, such as peptides and small interfering RNAs (siRNAs), could be markedly increased if high concentrations could be achieved and amplified selectively in tumour tissues versus normal tissues after intravenous administration. This has not been achievable so far in humans. We hypothesized that a poxvirus, which evolved for blood-borne systemic spread in mammals, could be engineered for cancer-selective replication and used as a vehicle for the intravenous delivery and expression of transgenes in tumours. JX-594 is an oncolytic poxvirus engineered for replication, transgene expression and amplification in cancer cells harbouring activation of the epidermal growth factor receptor (EGFR)/Ras pathway, followed by cell lysis and anticancer immunity. Here we show in a clinical trial that JX-594 selectively infects, replicates and expresses transgene products in cancer tissue after intravenous infusion, in a dose-related fashion. Normal tissues were not affected clinically. This platform technology opens up the possibility of multifunctional products that selectively express high concentrations of several complementary therapeutic and imaging molecules in metastatic solid tumours in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breitbach, Caroline J -- Burke, James -- Jonker, Derek -- Stephenson, Joe -- Haas, Andrew R -- Chow, Laura Q M -- Nieva, Jorge -- Hwang, Tae-Ho -- Moon, Anne -- Patt, Richard -- Pelusio, Adina -- Le Boeuf, Fabrice -- Burns, Joe -- Evgin, Laura -- De Silva, Naomi -- Cvancic, Sara -- Robertson, Terri -- Je, Ji-Eun -- Lee, Yeon-Sook -- Parato, Kelley -- Diallo, Jean-Simon -- Fenster, Aaron -- Daneshmand, Manijeh -- Bell, John C -- Kirn, David H -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2011 Aug 31;477(7362):99-102. doi: 10.1038/nature10358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jennerex Inc., 450 Sansome Street, 16th floor, San Francisco, California 94111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21886163" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; DNA, Viral/blood ; Female ; Gene Expression Regulation, Enzymologic ; Humans ; Infusions, Intravenous ; Male ; Middle Aged ; Neoplasms/pathology/surgery/*therapy/virology ; *Oncolytic Virotherapy ; Oncolytic Viruses/*physiology ; Organisms, Genetically Modified/physiology ; Poxviridae/*physiology ; Transgenes/genetics ; beta-Galactosidase/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-01
    Description: Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian-human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4017780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barouch, Dan H -- Whitney, James B -- Moldt, Brian -- Klein, Florian -- Oliveira, Thiago Y -- Liu, Jinyan -- Stephenson, Kathryn E -- Chang, Hui-Wen -- Shekhar, Karthik -- Gupta, Sanjana -- Nkolola, Joseph P -- Seaman, Michael S -- Smith, Kaitlin M -- Borducchi, Erica N -- Cabral, Crystal -- Smith, Jeffrey Y -- Blackmore, Stephen -- Sanisetty, Srisowmya -- Perry, James R -- Beck, Matthew -- Lewis, Mark G -- Rinaldi, William -- Chakraborty, Arup K -- Poignard, Pascal -- Nussenzweig, Michel C -- Burton, Dennis R -- AI055332/AI/NIAID NIH HHS/ -- AI060354/AI/NIAID NIH HHS/ -- AI078526/AI/NIAID NIH HHS/ -- AI084794/AI/NIAID NIH HHS/ -- AI095985/AI/NIAID NIH HHS/ -- AI096040/AI/NIAID NIH HHS/ -- AI100148/AI/NIAID NIH HHS/ -- AI10063/AI/NIAID NIH HHS/ -- AI100663/AI/NIAID NIH HHS/ -- P01 AI100148/AI/NIAID NIH HHS/ -- P40 OD012217/OD/NIH HHS/ -- P51 RR000168/RR/NCRR NIH HHS/ -- R01 AI084794/AI/NIAID NIH HHS/ -- R37 AI055332/AI/NIAID NIH HHS/ -- R56 AI091514/AI/NIAID NIH HHS/ -- T32 AI007387/AI/NIAID NIH HHS/ -- U19 AI066305/AI/NIAID NIH HHS/ -- U19 AI078526/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096040/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 14;503(7475):224-8. doi: 10.1038/nature12744. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172905" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Antibodies, Neutralizing/*therapeutic use ; DNA, Viral/blood ; HIV Antibodies/immunology ; HIV-1/*immunology ; Macaca mulatta ; Simian Acquired Immunodeficiency Syndrome/*therapy ; Simian Immunodeficiency Virus/*physiology ; T-Lymphocytes/immunology ; Viremia/therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-17
    Description: Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephenson, N L -- Das, A J -- Condit, R -- Russo, S E -- Baker, P J -- Beckman, N G -- Coomes, D A -- Lines, E R -- Morris, W K -- Ruger, N -- Alvarez, E -- Blundo, C -- Bunyavejchewin, S -- Chuyong, G -- Davies, S J -- Duque, A -- Ewango, C N -- Flores, O -- Franklin, J F -- Grau, H R -- Hao, Z -- Harmon, M E -- Hubbell, S P -- Kenfack, D -- Lin, Y -- Makana, J-R -- Malizia, A -- Malizia, L R -- Pabst, R J -- Pongpattananurak, N -- Su, S-H -- Sun, I-F -- Tan, S -- Thomas, D -- van Mantgem, P J -- Wang, X -- Wiser, S K -- Zavala, M A -- England -- Nature. 2014 Mar 6;507(7490):90-3. doi: 10.1038/nature12914. Epub 2014 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Western Ecological Research Center, Three Rivers, California 93271, USA. ; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama. ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Department of Forest and Ecosystem Science, University of Melbourne, Victoria 3121, Australia. ; 1] School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA [2] Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio 43210, USA (N.G.B.); German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany (N.R.). ; Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK. ; Department of Geography, University College London, London WC1E 6BT, UK. ; School of Botany, University of Melbourne, Victoria 3010, Australia. ; 1] Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama [2] Spezielle Botanik und Funktionelle Biodiversitat, Universitat Leipzig, 04103 Leipzig, Germany [3] Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio 43210, USA (N.G.B.); German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany (N.R.). ; Jardin Botanico de Medellin, Calle 73, No. 51D-14, Medellin, Colombia. ; Instituto de Ecologia Regional, Universidad Nacional de Tucuman, 4107 Yerba Buena, Tucuman, Argentina. ; Research Office, Department of National Parks, Wildlife and Plant Conservation, Bangkok 10900, Thailand. ; Department of Botany and Plant Physiology, Buea, Southwest Province, Cameroon. ; Smithsonian Institution Global Earth Observatory-Center for Tropical Forest Science, Smithsonian Institution, PO Box 37012, Washington, DC 20013, USA. ; Universidad Nacional de Colombia, Departamento de Ciencias Forestales, Medellin, Colombia. ; Wildlife Conservation Society, Kinshasa/Gombe, Democratic Republic of the Congo. ; Unite Mixte de Recherche-Peuplements Vegetaux et Bioagresseurs en Milieu Tropical, Universite de la Reunion/CIRAD, 97410 Saint Pierre, France. ; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA. ; State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China. ; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331, USA. ; 1] Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama [2] Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA. ; Department of Life Science, Tunghai University, Taichung City 40704, Taiwan. ; Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, 4600 San Salvador de Jujuy, Argentina. ; Faculty of Forestry, Kasetsart University, ChatuChak Bangkok 10900, Thailand. ; Taiwan Forestry Research Institute, Taipei 10066, Taiwan. ; Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan. ; Sarawak Forestry Department, Kuching, Sarawak 93660, Malaysia. ; Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA. ; US Geological Survey, Western Ecological Research Center, Arcata, California 95521, USA. ; Landcare Research, PO Box 40, Lincoln 7640, New Zealand. ; Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Alcala de Henares, 28805 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429523" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/metabolism ; Biomass ; *Body Size ; Carbon/*metabolism ; *Carbon Cycle ; Climate ; Geography ; Models, Biological ; Plant Leaves/growth & development/metabolism ; Sample Size ; Species Specificity ; Time Factors ; Trees/*anatomy & histology/classification/growth & development/*metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...