ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (227)
  • Cell Line  (227)
  • American Association for the Advancement of Science (AAAS)  (227)
  • Annual Reviews
  • International Union of Crystallography
  • Macmillian Magazines Ltd.
  • Oxford University Press
  • Springer
  • 2010-2014  (56)
  • 2000-2004  (116)
  • 1980-1984  (49)
  • 1975-1979  (6)
  • 1970-1974
  • Chemistry and Pharmacology  (227)
Collection
  • Articles  (227)
Publisher
  • American Association for the Advancement of Science (AAAS)  (227)
  • Annual Reviews
  • International Union of Crystallography
  • Macmillian Magazines Ltd.
  • Oxford University Press
  • +
Years
Year
Topic
  • 1
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-09-27
    Description: Tumor necrosis factor (TNF) is a key regulator of inflammatory responses and has been implicated in many pathological conditions. We used structure-based design to engineer variant TNF proteins that rapidly form heterotrimers with native TNF to give complexes that neither bind to nor stimulate signaling through TNF receptors. Thus, TNF is inactivated by sequestration. Dominant-negative TNFs represent a possible approach to anti-inflammatory biotherapeutics, and experiments in animal models show that the strategy can attenuate TNF-mediated pathology. Similar rational design could be used to engineer inhibitors of additional TNF superfamily cytokines as well as other multimeric ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steed, Paul M -- Tansey, Malu G -- Zalevsky, Jonathan -- Zhukovsky, Eugene A -- Desjarlais, John R -- Szymkowski, David E -- Abbott, Christina -- Carmichael, David -- Chan, Cheryl -- Cherry, Lisa -- Cheung, Peter -- Chirino, Arthur J -- Chung, Hyo H -- Doberstein, Stephen K -- Eivazi, Araz -- Filikov, Anton V -- Gao, Sarah X -- Hubert, Rene S -- Hwang, Marian -- Hyun, Linus -- Kashi, Sandhya -- Kim, Alice -- Kim, Esther -- Kung, James -- Martinez, Sabrina P -- Muchhal, Umesh S -- Nguyen, Duc-Hanh T -- O'Brien, Christopher -- O'Keefe, Donald -- Singer, Karen -- Vafa, Omid -- Vielmetter, Jost -- Yoder, Sean C -- Dahiyat, Bassil I -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Xencor, 111 West Lemon Avenue, Monrovia, CA 91016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512626" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD/metabolism ; Apoptosis ; Arthritis, Experimental/drug therapy ; Biopolymers ; Caspases/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Computer Simulation ; Disease Progression ; Enzyme-Linked Immunosorbent Assay ; Female ; Galactosamine/pharmacology ; HeLa Cells ; Humans ; Liver/drug effects ; NF-kappa B/metabolism ; Point Mutation ; *Protein Engineering ; Rats ; Receptors, Tumor Necrosis Factor/metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; *Signal Transduction ; Transcription Factor RelA ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/*antagonists & ; inhibitors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-06
    Description: Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Daniel F -- Shackelford, David B -- Mihaylova, Maria M -- Gelino, Sara -- Kohnz, Rebecca A -- Mair, William -- Vasquez, Debbie S -- Joshi, Aashish -- Gwinn, Dana M -- Taylor, Rebecca -- Asara, John M -- Fitzpatrick, James -- Dillin, Andrew -- Viollet, Benoit -- Kundu, Mondira -- Hansen, Malene -- Shaw, Reuben J -- 1P01CA120964/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-05/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 DK080425/DK/NIDDK NIH HHS/ -- R01 DK080425-04/DK/NIDDK NIH HHS/ -- R01 DK080425-05/DK/NIDDK NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-29/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205641" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Energy Metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Mitochondria, Liver/metabolism/ultrastructure ; Phenformin/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-02-02
    Description: The hypoxia-inducible factors (HIFs) 1alpha and 2alpha are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel-Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate-dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1alpha and -2alpha, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lando, David -- Peet, Daniel J -- Whelan, Dean A -- Gorman, Jeffrey J -- Whitelaw, Murray L -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):858-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences (Biochemistry), Adelaide University, SA 5005, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Asparagine/*metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia/*physiology ; Cell Line ; Humans ; Hydroxylation ; Hypoxia-Inducible Factor 1, alpha Subunit ; Mass Spectrometry ; Mice ; Mixed Function Oxygenases/metabolism ; Molecular Sequence Data ; Mutation ; Oxygen/*physiology ; Proline/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-04-02
    Description: The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1(-/-) mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, Robert J 3rd -- Rojas, Luis Alejandro -- Beck, David -- Bonasio, Roberto -- Schuller, Roland -- Drury, William J 3rd -- Eick, Dirk -- Reinberg, Danny -- F32 GM071166/GM/NIGMS NIH HHS/ -- GM-37120/GM/NIGMS NIH HHS/ -- GM-71166/GM/NIGMS NIH HHS/ -- R01 GM037120/GM/NIGMS NIH HHS/ -- R37 GM037120/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):99-103. doi: 10.1126/science.1202663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Department of Biochemistry, New York University School of Medicine, 522 First Avenue, Smilow 211, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arginine/metabolism ; Cell Line ; HeLa Cells ; Humans ; Methylation ; Mice ; Mutation ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/metabolism ; RNA Polymerase II/genetics/*metabolism ; RNA, Small Nuclear/metabolism ; RNA, Small Nucleolar/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-07-12
    Description: We report the use of genetically engineered cells in a pathogen identification sensor. This sensor uses B lymphocytes that have been engineered to emit light within seconds of exposure to specific bacteria and viruses. We demonstrated rapid screening of relevant samples and identification of a variety of pathogens at very low levels. Because of its speed, sensitivity, and specificity, this pathogen identification technology could prove useful for medical diagnostics, biowarfare defense, food- and water-quality monitoring, and other applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rider, Todd H -- Petrovick, Martha S -- Nargi, Frances E -- Harper, James D -- Schwoebel, Eric D -- Mathews, Richard H -- Blanchard, David J -- Bortolin, Laura T -- Young, Albert M -- Chen, Jianzhu -- Hollis, Mark A -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA. thor@ll.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855808" target="_blank"〉PubMed〈/a〉
    Keywords: Aequorin/biosynthesis ; Antibodies, Bacterial/immunology ; Antibodies, Viral/immunology ; *B-Lymphocytes/immunology ; Bacillus anthracis/immunology/isolation & purification ; Bacteria/immunology/*isolation & purification ; *Bacteriological Techniques ; *Biosensing Techniques ; Cell Line ; Colony Count, Microbial ; Encephalitis Virus, Venezuelan Equine/immunology/isolation & purification ; Escherichia coli O157/immunology/isolation & purification ; Foot-and-Mouth Disease Virus/immunology/isolation & purification ; Immunoglobulin Variable Region/immunology ; Light ; Receptors, Antigen, B-Cell/immunology ; Sensitivity and Specificity ; Time Factors ; Transfection ; Viruses/immunology/*isolation & purification ; Yersinia pestis/immunology/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-01-24
    Description: Unlike major histocompatibility proteins, which bind peptides, CD1 proteins display lipid antigens to T cells. Here, we report that CD1a presents a family of previously unknown lipopeptides from Mycobacterium tuberculosis, named didehydroxymycobactins because of their structural relation to mycobactin siderophores. T cell activation was mediated by the alphabeta T cell receptors and was specific for structure of the acyl and peptidic components of these antigens. These studies identify a means of intracellular pathogen detection and identify lipopeptides as a biochemical class of antigens for T cells, which, like conventional peptides, have a potential for marked structural diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moody, D Branch -- Young, David C -- Cheng, Tan-Yun -- Rosat, Jean-Pierre -- Roura-Mir, Carme -- O'Connor, Peter B -- Zajonc, Dirk M -- Walz, Andrew -- Miller, Marvin J -- Levery, Steven B -- Wilson, Ian A -- Costello, Catherine E -- Brenner, Michael B -- AI30988/AI/NIAID NIH HHS/ -- AI50216/AI/NIAID NIH HHS/ -- AR48632/AR/NIAMS NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- GM25845/GM/NIGMS NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P20 RR16459/RR/NCRR NIH HHS/ -- P41-RR10888/RR/NCRR NIH HHS/ -- S10-RR10493/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):527-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA. bmoody@rics.bwh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14739458" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigen Presentation ; Antigens, Bacterial/chemistry/*immunology/metabolism ; Antigens, CD1/chemistry/immunology/metabolism ; Cell Line ; Chromatography, High Pressure Liquid ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Lipoproteins/chemistry/*immunology/metabolism ; *Lymphocyte Activation ; Models, Molecular ; Mycobacterium tuberculosis/growth & development/*immunology ; Oxazoles/chemistry/*immunology/metabolism ; Protein Conformation ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; T-Lymphocytes/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-12-20
    Description: Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Jason M -- Castle, John -- Garrett-Engele, Philip -- Kan, Zhengyan -- Loerch, Patrick M -- Armour, Christopher D -- Santos, Ralph -- Schadt, Eric E -- Stoughton, Roland -- Shoemaker, Daniel D -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosetta Inpharmatics LLC, Merck & Co., Inc., 12040 115th Avenue N.E., Kirkland, WA 98034, USA. jason_johnson@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684825" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amyloid beta-Protein Precursor/analysis/genetics ; Cell Line ; DNA, Complementary ; *Exons ; Expressed Sequence Tags ; *Genome, Human ; Humans ; Hydroxymethylglutaryl CoA Reductases/analysis/genetics ; Molecular Sequence Data ; *Oligonucleotide Array Sequence Analysis ; *Phosphoric Monoester Hydrolases ; Protein Isoforms/analysis ; Proteins/analysis/genetics ; RNA Precursors/*genetics ; ROC Curve ; Reverse Transcriptase Polymerase Chain Reaction ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...