ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photoperiodism  (2)
  • Al3+  (1)
  • Springer  (3)
  • American Institute of Physics (AIP)
  • American Physical Society
  • 2010-2014
  • 2005-2009
  • 1990-1994  (2)
  • 1985-1989  (1)
  • 1905-1909
Collection
Publisher
  • Springer  (3)
  • American Institute of Physics (AIP)
  • American Physical Society
Years
  • 2010-2014
  • 2005-2009
  • 1990-1994  (2)
  • 1985-1989  (1)
  • 1905-1909
Year
  • 1
    ISSN: 1432-2048
    Keywords: Action spectrum ; Light-grown plants ; Photoperiodism ; Phytochrome (type I) ; Triticum (photoperiodism)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fluence-rate response curves for wavelengths from 640 nm to 730 nm were constructed for the day-extension promotion of flowering in green, light-grown, wheat (Triticum aestivum L., cv. Alexandria), a long-day plant. The resultant action spectrum had action maxima at 660 nm and 716 nm and resembles spectra for the high-irradiance reaction (HIR) seen in etiolated plants. Because, the HIR is thought to be controlled by type I pytochrome (that which is most abundant in etiolated tissue) our results indicate the involvement of type I phytochrome in the photomorphogenesis of a light-grown, green plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Light and plant growth ; Photoperiodism ; Phytochrome (type 1) ; Triticum (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 134 (1991), S. 167-178 
    ISSN: 1573-5036
    Keywords: Al3+ ; aluminium ; hydroxy-aluminium ; phytotoxicity ; polynuclear aluminium ; rhizotoxicity ; roots ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aluminium (III) released from soil minerals to the soil solution under acid conditions may appear as hexaaquaaluminium (Al(H2O)6 3+, or Al3+ for convenience) or may react with available ligands to form additional chemical species. That one or more of these species is rhizotoxic (inhibitory to root elongation) has been known for many decades, but the identity of the toxic species remains problematical for the following reasons. 1. Several Al species coexist in solution so individual species cannot be investigated in isolation, even in artificial culture media. 2. The activities of individual species must be calculated from equilibrium data that may be uncertain. 3. The unexpected or undetected appearance of the extremely toxic triskaidekaaluminium (AlO4Al12(OH)24(H2O)12 7+ or Al13) may cause misatribution of toxicity to other species, especially to mononuclear hydroxy-Al. 4. If H+ ameliorates Al3+ toxicity, or vice versa, then mononuclear hydroxy-Al may appear to be toxic when it is not. 5. The identity and activities of the Al species contacting the cell surfaces are uncertain because of the H+ currents through the root surface and because of surface charges. This article considers the implications of these problems for good experimental designs and critically evaluates current information regarding the relative toxicities of selected Al species. It is concluded that polycationic Al (charge 〉2) is rhizotoxic as are other polyvalent cations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...