ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-30
    Description: Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31(2), (2018):174–181, doi:10.5670/oceanog.2018.219.
    Description: Gradients of heat and salt affect the propagation of sound energy in the ocean. Anticipated changes in oceanic conditions will alter thermohaline conditions globally, thus altering sound propagation. In this context, we examine changes in shallow- water propagation. Because these waters are close to the surface, they will be the earliest to change as the atmospheric state and radiative conditions change. We compare current and possible future propagation patterns near fronts and across fronts on continental shelves. Changes in sound pathways between the deep ocean and coastal regions are also examined, including an example from the Arctic Ocean.
    Description: GG was supported by the Office of Naval Research under grants N00014-16-1-3071 and N00014-16-1-2774.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2015. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Ocean Engineering 40 (2015): 237-249, doi:10.1109/JOE.2013.2294291.
    Description: A study of sound propagation over a submarine canyon northeast of Taiwan was made using mobile acoustic sources during a joint ocean acoustic and physical oceanographic experiment in 2009. The acoustic signal levels (equivalently, transmission losses) are reported here, and numerical models of 3-D sound propagation are employed to explain the underlying physics. The data show a significant decrease in sound intensity as the source crossed over the canyon, and the numerical model provides a physical insight into this effect. In addition, the model also suggests that reflection from the canyon seabed causes 3-D sound focusing when the direction of propagation is along the canyon axis, which remains to be validated in a future experiment. Environmental uncertainties of water sound speed, bottom geoacoustic properties, and bathymetry are addressed, and the implications for sound propagation prediction in a complex submarine canyon environment are also discussed.
    Description: The Quantifying, Predicting and Exploiting (QPE) Uncertainty Initiative Experiment was supported jointly by the National Science Council, Taiwan, under Project NSC98-2623-E002-018-D and the U.S. Office of Naval Research (ONR) under Grant N00014-08-1-0763. The work of Y.-T. Lin was supported by the U.S. ONR under Grants N00014-10-1-0040 and N00014-13-1-0026. The work of T. F. Duda was supported by the U.S. ONR under Grant N00014-11-1-0194.
    Keywords: Acoustics ; Noise ; Numerical models ; Solid modeling ; Sonar equipment ; Underwater vehicles ; Vehicles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 74 (2017): 240-255, doi:10.1139/cjfas-2015-0301.
    Description: A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.
    Description: AUV missions were funded by an Office of Naval Research grant to the Woods Hole Oceanographic Institution and Rutgers University. The field work was supported by the Office of Naval Research under grant N00014-11-1-0160.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1969-1993, doi:10.1175/JPO-D-18-0031.1.
    Description: Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
    Description: The Woods Hole research was supported by National Science Foundation Grant OCE-1060430 and by the Office of Naval Research Grants N00014-11-1-0701 and N00014-17-1-2624. The USM research was supported by ONR Grant N00014-15-1-2288 and National Science Foundation Grant OCE-1537449.
    Description: 2019-02-28
    Keywords: Internal waves ; Wave properties ; Tides ; Differential equations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2016. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Proceedings of Meetings on Acoustics 23 (2016): 070013, doi:10.1121/2.0000214.
    Description: The Woods Hole Oceanographic Institution (WHOI) was founded in 1930, and throughout its history has had a strong involvement in research into the science and applications of sound in the ocean. In terms of a brief history, three eras stand out: (1) pre-WWII, (2) WWII, and (3) the postwar years. This manuscript will focus on the history of the most influential and colorful, individuals and stories that arose during the war years. Provided are personal reminiscences, technical report details, and photos illustrating the achievements, and importance, in underwater sound research at WHOI during that time.
    Description: This work was supported by ONR Grant N00014-14-1-0040/N00014-16-1-2361.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3), (2019): 1996-2015, doi:10.1121/1.5126012.
    Description: Three-dimensional (3D) underwater sound field computations have been used for a few decades to understand sound propagation effects above sloped seabeds and in areas with strong 3D temperature and salinity variations. For an approximate simulation of effects in nature, the necessary 3D sound-speed field can be made from snapshots of temperature and salinity from an operational data-driven regional ocean model. However, these models invariably have resolution constraints and physics approximations that exclude features that can have strong effects on acoustics, example features being strong submesoscale fronts and nonhydrostatic nonlinear internal waves (NNIWs). Here, work to predict NNIW fields to improve 3D acoustic forecasts using an NNIW model nested in a tide-inclusive data-assimilating regional model is reported. The work was initiated under the Integrated Ocean Dynamics and Acoustics project. The project investigated ocean dynamical processes that affect important details of sound-propagation, with a focus on those with strong intermittency (high kurtosis) that are challenging to predict deterministically. Strong internal tides and NNIW are two such phenomena, with the former being precursors to NNIW, often feeding energy to them. Successful aspects of the modeling are reported along with weaknesses and unresolved issues identified in the course of the work.
    Description: This work was supported by Department of Defense Multidisciplinary University Initiative (MURI) Grant No. N00014-11-1-0701, managed by the Office of Naval Research Ocean Acoustics Program, and National Science Foundation Grant No. OCE-1060430. Final manuscript preparation was supported by ONR Ocean Acoustics Grant Nos. N00014-17-1-2624 and N00014-17-1-2692. P.F.J.L. also thanks ONR and NSF for research support under Grant Nos. N00014-13-1-0518 (Multi-DA) and OCE-1061160 (ShelfIT) to MIT, respectively. The MSEAS-based series of simulations for the New Jersey shelf region examined here was accelerated toward completion by the interest in realistic 3D acoustic fields expressed by Dr. Ivars Kirsteins at the Naval Undersea Warfare Center.
    Description: 2020-03-30
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 145(5), (2019):EL335-EL340, doi: 10.1121/1.5099560.
    Description: A three-dimensional underwater sound propagation model with realistic ocean environmental conditions has been created for assessing the impacts of noise from offshore wind farm construction and operation. This model utilizes an existing accurate numerical solution scheme to solve the three-dimensional Helmholtz wave equation, and it is compared and validated with acoustic transmission data between 750 and 1250 Hz collected during the development of the Block Island Wind Farm (BIWF), Rhode Island. The variability of underwater sound propagation conditions has been investigated in the BIWF area on a temporal scale of months and a spatial scale of kilometers. This study suggests that future offshore wind farm developments can exploit the seasonal variability of underwater sound propagation for mitigating noise impact by scheduling wind farm construction during periods of high acoustic transmission loss. Discussions on other applications of soundscape prediction, planning, and management are provided.
    Description: The authors would like to acknowledge Captain Ken Houlter and First Mate Ian Hanley of the WHOI R/V Tioga. The authors would also like to acknowledge Dr. Steven Crocker from the Naval Undersea Warfare Center in Newport, Rhode Island for the design of the tetrahedral hydrophone array. Study concept, oversight, and funding under the Real-time Opportunity for Development Environmental Operations (RODEO) were provided by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC under Contract No. M16PD00025. The Program Manager at BOEM is Dr. Mary Boatman. The prime contractor for this work is HDR, Inc. (Program Manager Anwar Khan).
    Description: 2019-11-02
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...