ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (19)
  • 1
    Publication Date: 2015-02-13
    Description: Hydrothermal experiments were conducted at ca. 1 to 7000 bars and 700 to 1250 °C in 121 rhyolitic to basaltic systems to determine Cl solubility in silicate melts, i.e., the maximum Cl concentration in melts that are saturated in a hydrosaline liquid with or without an aqueous or aqueous-carbonic vapor. The Cl concentration of melts increases with the Cl contents of the fluid unless the melt coexists with vapor plus hydrosaline liquid at fixed pressure and temperature; this phase assemblage buffers the Cl content of each phase with increasing Cl in the system. The Cl content of fluid(s)-saturated melts is independent of the CO 2 concentration of the saline liquid ± vapor with up to 21 wt% CO 2 in the fluid(s). The experiments show that Cl dissolution in aluminosilicate melts increases with temperature and pressure. Chlorine solubility is also a function of melt composition; it increases with the molar ([Al 1/2 +Ca 1/2 +Mg 1/2 +Na]/Si) of the melt. These experimental data have been integrated with results involving 41 other experiments ( Webster and De Vivo 2002 ) to develop a broadly expanded model that supports calculation of Cl solubility in 163 aluminosilicate melts. This empirical model applies to Cl dissolution in melts of most silicate magmas at depths as great as 25 km. It determines the exsolution of hydrosaline liquid, with or without a coexisting vapor, as magmas ascend from depth, cool, crystallize, and differentiate from mafic to felsic compositions. In combination with H 2 O solubility models, our model supports determination of H 2 O-Cl solubility relations for most aluminosilicate magmas and is useful for barometric estimations based on silicate melt inclusions containing low CO 2 and moderate to high-Cl concentrations. The model is applied to the phase relations of fluids in volatile-enriched magmas of Augustine volcano, Alaska. The Cl and H 2 O concentrations of melt inclusions from 14, basaltic to dacitic eruptive units are compared with modeled solubilities of Cl and H 2 O in Augustine melts. The majority of these eruptions involved magmas that first exsolved aqueous to aqueous-carbonic vapors when the melts were dacitic in composition (i.e., before the residual melts in these magmas had evolved to felsic compositions) and well prior to the eruptions. Hydrosaline liquid with or without a vapor phase exsolved from other, more-felsic fractions of Augustine melts at low, near-surface pressures of several tens of bars.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-02
    Description: The solubility of H 2 O- and CO 2 -bearing fluids in trachytic and trachybasaltic melts from erupted magmas of the Campi Flegrei Volcanic District has been investigated experimentally at 1100 and 1200 °C, respectively, and at 100, 200, 300, 400, and 500 MPa. The solubility of H 2 O in the investigated melts varies between 3.48 ± 0.07 wt% at 100 MPa to 10.76 ± 0.12 wt% at 500 MPa in trachytic melts and from 3.49 ± 0.07 wt% at 100 MPa to 9.10 ± 0.11 wt% at 500 MPa in trachybasaltic melts. The content of dissolved CO 2 in melts coexisting with the most CO 2 -rich fluid phase increases from 281 ± 24 ppm at 100 MPa to 2710 ± 99 ppm at 500 MPa in trachyte, and from 727 ± 102 ppm at 100 MPa to 3565 ± 111 ppm at 500 MPa in trachybasalt. Natural samples from the Campanian Ignimbrite eruption (trachyte) and from the Solchiaro eruption (trachybasalt) were collected around the city of Naples and on Procida Island. Deuterium/hydrogen (D/H) ratios were analyzed in natural pumices pre-heated at different temperatures to remove water adsorbed and/or imprinted by glass alteration processes. It has been determined that heating of the glass to 350 °C efficiently removes most of secondary water and the remaining concentrations represent primary magmatic water preserved in the erupted material. Hydrogen isotope composition (with D values ranging between –70 and –110) and its correlation with bulk water content in selected pumice samples of the Campanian Ignimbrite eruption are consistent with isotopic fractionation between magmatic fluid and melt during degassing of erupting magma. Hence, the H 2 O and CO 2 contents in natural glasses from pumice samples are considered as minimum estimates on volatile concentrations in the melt just prior to the eruption or at the fragmentation event. The water contents in natural glasses vary from 0.83 ± 0.07 to 3.74 ± 0.06 wt% for trachytes from the Campanian Ignimbrite eruption and from 1.96 ± 0.06 to 3.47 ± 0.07 wt% for trachybasalts from the Solchiaro eruption. The CO 2 contents vary from 78 ± 120 ppm CO 2 to 1743 ± 274 ppm for trachytes from the Campanian Ignimbrite eruption and from 240 ± 293 to 1213 ± 250 ppm for trachybasalts from the Solchiaro eruption. A combination of natural and experimental data provides minimum pressure estimates for the storage and ascent conditions of magmas. The Campanian Ignimbrite magma could have been stored or ponded during its rising path at two different levels: a deeper one corresponding to depth of about 8 to 15 km and a shallower one at about 1 to 8 km. Trachybasalts from Solchiaro erupted from the deepest level of about 11 km with a storage or ponding level at around 2 to 8 km depth. Although an uncertainty of at least a kilometer has to be considered in estimating storage or ponding depths, these estimates point to significantly deeper magmatic sources for both eruptions as those considered previously.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-02
    Description: Synthetic fluid inclusions formed in high P-T experiments, which are subsequently analyzed with LA-ICP-MS, enable us to collect thermodynamic data to constrain metal transport in aqueous fluids as well as partitioning of metals between coexisting phases. The most essential prerequisite for such studies is to ensure that equilibrium conditions between liquid and solid phases are reached prior to the formation of synthetic fluid inclusions in the host mineral. Various methods have been proposed by different authors to achieve this goal, but to this point our knowledge on the best approach to synthesize equilibrated fluid inclusions under constrained pressure, temperature, and compositional ( P , T , and X ) conditions remains poor. In addition, information on the time needed to reach equilibrium metal concentrations in the fluid as well as on the timing of the onset of fluid inclusion formation in the host mineral are scarce. The latter has been tested in a series of time-dependent experiments at 800 °C and 200 MPa using scheelite (CaWO 4 ), molybdenite (MoS 2 ) and metallic gold as dissolving phases and using different approaches to optimize the formation of equilibrated fluid inclusions. Both $${f}_{{\mathrm{O}}_{2}}$$ and $${f}_{{\mathrm{s}}_{2}}$$ were fixed during all experiments using the pyrite-pyrrhotite-magnetite buffer (PPM). As an intermediate in situ quenching of the sample charge plays an important role in the synthesis of fluid inclusions, we further tested the efficiency of such an intermediate quench for re-opening fluid inclusions formed at 600 °C and 200 MPa. Our results reveal that fluid inclusions start forming almost instantaneously and that equilibrium between fluid and solid phases occurs in the timescale of less than two hours for molybdenite and gold up to ca. 10 h for scheelite. The best approach to synthesize equilibrated fluid inclusions at 800 °C was obtained by using an intermediate quench on a previously unfractured quartz host. Experiments at 600 °C showed similar results and illustrate that this should be the method of choice down to this temperature. Below 600 °C pre-treatment of the quartz host (HF etching and/or thermal fracturing) becomes important to produce large enough fluid inclusions for the analyses via LA-ICP-MS and special care must be taken to prevent premature entrapment of the fluid. Fluids with 8 wt% NaCl in equilibrium with scheelite, molybdenite and gold at 800 °C and 200 MPa have concentrations of ca. 7300 ppm W, 1300 ppm Mo, and 300 ppm Au, respectively, which is in good agreement with results from other studies or extrapolation from lower temperatures. It can be concluded that the formation of synthetic fluid inclusions from an equilibrated fluid is possible, but different experimental designs are required, depending on the investigated temperature. In general, dissolution of solid phases seems to be much faster than previously assumed, so that experimental run durations can be designed considerably shorter, which is of great advantage when using fast-consuming mineral buffers.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2018-01-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The strong dependence of vanadium partitioning between olivine and silicate melt (DVOl-M) on redox conditions (fO2) can be used as sensitive oxybarometer in magmatic systems. Here we extend the experimental database on DVOl-M, obtained so far at high temperatures (mainly above 1250 °C), to lower temperatures that are typical for island-arc basalts. Crystallization experiments were performed using a composition from Mutnovsky volcano (Kamchatka), and the investigated temperature, pressure, and oxygen fugacity ranges were 1025–1150 °C, 0.1 and 0.3 GPa, and ΔQFM of –0.5 to +3.2, respectively. The water content in melts ranged from 0.6 to ∼6.5 wt% H2O. The data demonstrate a strong negative correlation between DVOl-M and oxygen fugacity, similar to the behavior observed previously at higher temperatures and in MgO-rich compositions. The correlation between DVOl-M and ΔQFM in the range from –0.5 to +3.2 is described for melts with MgO 〈 12 wt% and Na2O 〈 4 wt% at temperatures ≤1250 °C by the empirical equation: ΔQFM = −3.07−0.29+0.26 logDVOl-M – 3.34−0.49+0.40 with the standard error (SE) as a function of logDVOl-M: 2SE(ΔQFM) = –0.275logDVOl-M + 0.4. We suggest that this equation can be used as an oxybarometer, which is particularly well applicable to the hydrous island-arc magmas at relatively low temperature. Application of the equation to the composition of melt inclusions and their host olivine phenocrysts from basalts of Mutnovsky volcano, containing vanadium concentrations in the range of 250–370 and 4–6 ppm, respectively, reveals an oxygen fugacity in the range ΔQFM +1.9 to +2.3. The estimates are in a good agreement with olivine-spinel oxybarometry for Mutnovsky basalts and may be typical for moderately evolved island-arc magmas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Invited talk] In: 15. International Symposium on Experimental Mineralogy, Petrology and Geochemistry (EMPG-XV), 05.-08.06.2016 , Zürich, Switzerland .
    Publication Date: 2016-11-08
    Description: Sulfur is a volatile component that participates in a number of processes from magma generation to volcanic eruption affecting magma properties and controlling mobility of many different elements. These effects depend on abundance and proportions of redox-sensitive S species and on their partitioning between magmatic phases...
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-08
    Description: A promising method for the quantification of the redox conditions (oxygen fugacity, fO2) in basaltic systems, which might be applied to quenched melt inclusions in olivine, exploits the partitioning of vanadium between olivine and coexisting silicate melt (DV Ol‐M). Strong correlation of DV Ol‐M with fO2 was investigated in a number of experimental works on dry mafic and ultramafic melts in a wide range of fO2 conditions at pressures of 1 atm and 0.5–2 GPa, temperature range of 1150–1530°C (e.g., Canil&Fedortchouk, 2001; Mallmann&O’Neill, 2009; 2013). Only a few melt compositions equilibrated with olivine at T≤1250°C were studied so far. Although it was shown that melt composition, pressure and temperature have small effect on DV Ol‐M, more data are required to extend the calibration of the V oxybarometry to hydrous low‐temperature basalts representing island arc magmas.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...