ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as observations for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere-troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (SRIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields.The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses.In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses representation of the physical drivers that influence stratospheric WV, such as temperatures in the tropical tropopause layer, methane oxidation, and the stratospheric overturning circulation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN46784 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 17; 20; 12,743-12,778
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN17946
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...