ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Solid evidence of liquid water in primitive meteorites is given by the ordinary chondrites H5 Monahans (1998) and H3-6 Zag. Aqueous fluid inclusion-bearing halite (NaCl) crystals were shown to be common in Zag. These striking blue/purple crystals (Figure 1), which gained the coloration from electron-trapping in the Cl-vacancies through exposure to ionizing radiation, were determined to be over 4.0-4.7 billion years old by I-Xe dating. The halite grains are present as discrete grains within an H-chondrite matrix with no evidence for aqueous alteration that indicates a xenogenic source, possibly ancient cryovolcanism. They were proposed to be formed from the cryovolcanic plumes on icy C-type asteroids (possibly Ceres), and were transferred and incorporated into the H chondrite parent asteroid following the eruption event(s). A unique aspect of these halites is that they contain abundant solid inclusions hosted within the halites alongside the water inclusions. The solid inclusions were suggested to be entrained within the fluid erupted from the cryovolcanic event(s), and were shown to be comprised of abundant organics. Spectrofluorometric study and Raman imaging of the halites have identified macromolecular carbon and aliphatic carbon compounds. In order to investigate the type of organics present in Zag and in particular within the fluid-bearing halites, we studied for the first time the amino acid contents of a selected mineral (halite) phase in a meteorite sample.
    Keywords: Geophysics
    Type: JSC-CN-35255 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Since the 1980s, more than 20 thermally metamorphosed carbonaceous chondrites (TMCCs) have been found in Antarctica and in hot deserts. The petrology of TMCCs suggests that some C-type asteroids were heated and dehydrated after aqueous alteration. Besides, previous studies indicate that the conditions of thermal metamorphism experienced by these meteorites may have been quite variable. It reflects that metamorphism of the TMCCs was complex.
    Keywords: Geophysics
    Type: JSC-CN-35128 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.
    Keywords: Geophysics
    Type: JSC-CN-35134 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: A group called as Martian meteorites is composed of shergottites, nakhlites, chassignites, and orthopyroxenite, and they are thought to be derived from Mars. Among the Martian meteorites nakhlites and chassignites show similar cosmic-ray exposure (CRE) ages of 11-12 million years, although petrologic characteristics are very different between them. Both nakhlites and chassignites indicate similar cooling rates, and would have cooled in identical scale of igneous bodies. However, the relationship between nakhlites and chassignites is still unclear, although they might have ejected at the same time, i.e., by accidentally coincidental impact events which occurred at different places on Mars or by a single impact which excavated both nakhlites and chassignites residing in a relatively small area. Here we propose that the chassignites show a genetically close relationship with nakhlites, i.e., both groups could be located within a relatively narrow area from where a single impact could have launched those meteorites, based on noble gas data obtained in our laboratory. If chassignites were really ejected with nakhlites by a single impact, both types of meteorites will provide us with geological/petrological profile in the area where both pyroxene-rich lava (nakhlites) and dunite-rich rocks (chassignites) are located close to the Martian surface. [i.e. discusses NWA 2737, etc. (Martian meteorites that fell in Northwest Africa)]
    Keywords: Geophysics
    Type: JSC-E-DAA-TN68238 , Annual Meeting of the Meteoritical Society (MetSoc 2019); Jul 07, 2019 - Jul 12, 2019; Sapporo, Hokkaido; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using -Raman spectroscopy.
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-33595 , Astrobiology Science Conference 2015 (AbSciCon2015); Jun 15, 2015 - Jun 17, 2015; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Amoeboid olivine aggregates (AOAs) are important components of carbonaceous chondrites that are interpreted as solar nebula condensates, and can be used as sensitive indicators of metamorphic or alteration processes. We have been investigating a set of Antarctic CR chondrites from the Japanese-NIPR collection in order to study variations within the CRs in general and their AOAs in particular. Main goals are to identify variations in conditions of nebular condensation, parent body effects and terrestrial weathering.
    Keywords: Geophysics
    Type: JSC-CN-39694 , Annual Meeting of the Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-39701 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Sante Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (〈8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-35689 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...