ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • Astronomy
  • E31
  • E52
  • J24
  • 2015-2019  (14)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: We report the design of a new application-specific integrated circuit (ASIC) for use in radio telescope correlators. It supports the construction of correlators for an arbitrarily large number of signals. The ASIC uses an intrinsically low-power architecture along with design techniques and a process that together result in unprecedentedly low power consumption. The design is flexible in that it can support telescopes with almost any number of antennas N. It is intended for use in an "FX" correlator, where a uniform filter bank breaks each signal into separate frequency channels prior to correlation.
    Keywords: Astronomy
    Type: United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM); Jan 06, 2016 - Jan 09, 2016; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-26
    Description: Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it uses GPUs built in 28 nm technology and achieves about 1000 pJ. Correlators being designed for the SKA telescopes (N = 128 and N = 512) using FPGAs in 16nm technology are predicted to achieve about 100 pJ.
    Keywords: Astronomy
    Type: Journal of Astronomical Instrumentation; 5; 2; 1650002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Several thousands GPS/GNSS permanent stations, managed by both scientifc and cadastral institutions, are now available on the European plate and its boundaries. Data coming from these stations provide unprecedented spatial and temporal coverage of time-dependent deformation signals essential to understand the fundamental physics that govern tectonic deformation and faulting. The National Earthquake Center (Centro Nazionale Terremoti, CNT) of the National Institute of Geophysics and Volcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) in Italy, is the Italian leader institution for the collection, management and scientific analysis of Global Positioning Systems (GPS) measurements. Distinct analysis centers independently and routinely process and analyze data using high-quality geodetic software (Bernese, Gamit, Gipsy) to measure the movements of 〉1000 points spanning the Eurasian plate and its boundaries. The goal of this project is to offer high-quality geodetic products, increase their accessibility to the European scientific community and promote the inter-disciplinary data exchange through a multi-level, user-friendly data gateway. These activities will be performed in strict contact with the GNSS Working Group of the EPOS project (http://www.eposeu.org) that is proposing to integrate, archive and distribute data, metadata and products for available GNSS stations on the European plate.
    Description: Published
    Description: Vienna, Austria
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: GPS velocity field ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Studies on seismicity at Mt. Etna are of extreme importance for the high seismic and volcanic risk which characterizes the area. In this region, seismic events are mainly located at less than 5 km b.s.l. depth, producing arrivals with medium-to low-frequency content and/or complicated signatures at stations just a few kilometers distant from the epicentral area [Patanè and Giampiccolo, 2004]; on the other hand, earthquakes which present high frequency content and sharp arrivals, similar to those of typical earthquakes of tectonic areas, are mainly located between 5 and 20 km. Seismicity mainly occurs in the form of swarms, whereas foreshock-mainshock-aftershock sequences are rarely recorded, and seldom exceed magnitude 4.0 [Ferrucci and Patanè, 1993]. In volcanic areas the calculation of the local magnitude ML is more objective than that of MD because the measurement of the signal amplitude is less ambiguous with respect to the decay of the earthquake coda, which may be masked by the presence of noise, volcanic tremor, or other shocks [Del Pezzo and Petrosino, 2001; D’Amico and Maiolino, 2005]. Therefore, since magnitude estimation in MD and ML, although mutually related, do not produce the same results, it is mandatory to adopt an empirical conversion to produce a homogeneous catalogue for Mt. Etna region. The Standard Linear Regression (SLR) is the simplest and most commonly used regression procedure applied in literature [Gasperini, 2002; Bindi et al., 2005]. However its application without checking whether its basic requirements are satisfied may lead to wrong results [Castellaro et al., 2006]. As an alternative it is better to use the Orthogonal Regression (OR) relation [Carrol and Ruppert, 1996], which assumes a different uncertainty for each of the two variables [Lolli and Gasperini, 2012]. Investigating the performance of different regression procedures commonly used to convert magnitudes from one type into another one, is also an operation which has strong influence on the slope of the frequency-magnitude distribution (the b-value of the Gutenberg-Richter). In particular, the frequencymagnitude distribution can be heavily biased when calculated on magnitudes converted from various scales. By contrast, it is possible to obtain unbiased estimates of a and b values by converting magnitudes through OR. The application of OR requires the estimate of the ratio between the dependent and the independent variable variances, and when only the ratio variance is known, the OR represents the simplest and mostly used approach. A database of magnitude observations recorded at Mt. Etna during the period 2005 – 2012 is used for this study [Gruppo Analisi Dati Sismici, 2013]. The new ML-MD relationship obtained by applying the OR is: ML=1.237(±0.009)MD - 0.483(±0.016) with a correlation coefficient R=0.90 and rms between observed and calculated ML of 0.27. The superiority of the OR relation over the SLR has been demonstrated on the basis of the best fitting between regression line and data distribution. The ML-MD relationship obtained significantly reduces the previous bias between ML and MD estimated for earthquakes recorded at Mt. Etna and will be used for the purpose of catalogue homogenization. We conclude that the commonly used SLR may induce systematic errors in magnitude conversion; this can introduce apparent catalogue incompleteness, as well as a heavy bias in estimates of the slope of the frequency–magnitude distributions.
    Description: Published
    Description: Nicolosi, Italy
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: Local magnitude, duration magnitude ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Durante il IV semestre di attività, l’Unità di Ricerca “Analisi delle sorgenti sismogenetiche” (OR2), ha ampliato ulteriormente il numero di scenari di scuotimento prodotti per il sito dimostratore di Cosenza (vedi precedente rapporto tecnico), eseguendo nuove modellazioni a sorgente estesa anche per la classe di magnitudo 5.0. Al fine di validare l’affidabilità degli scenari di scuotimento si eseguirà il confronto tra le distribuzioni statistiche dei parametri di strong motion simulati (e.g. PGA e PGV) con quelle predette dalle più recenti GMPEs europee (Bindi et al., 2014). Il range di validità di suddette relazioni empiriche predittive del moto del suolo è compatibile, in termini di magnitudo e distanza, con quello degli eventi di scenario modellati per il sito di Cosenza. Per l’analisi di dettaglio dei risultati acquisiti si rimanda al rapporto tecnico del prossimo semestre di attività.
    Description: PON 01/02710 MASSIMO - Monitoraggio in Area Sismica di SIstemi MOnumentali
    Description: Unpublished
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: reserved
    Keywords: Calabria ; Faglie sismogeniche ; Scenari di scuotimento ; Sismogrammi sintetici ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Durante il V semestre di attività, l’Unità di Ricerca “Analisi delle sorgenti sismogenetiche” (OR2), ha prodotto gli scenari di scuotimento per il sito dimostratore di Reggio Calabria, eseguendo n. 31 modellazioni a sorgente estesa per le classi di Mw 5.0, 6.0 e 7.0 e adottando il medesimo work flow proposto per il sito di Cosenza, per la cui descrizione si rimanda al report del III semestre di attività. Nella fase di aggiornamento dei dati geologici in Calabria meridionale è stata di fondamentale importanza la collaborazione con la UR Rilievi Aeromagnetici.
    Description: PON 01/02710 MASSIMO - Monitoraggio in Area Sismica di SIstemi Monumentali
    Description: Unpublished
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: reserved
    Keywords: Calabria ; Faglie sismogeniche ; Scenari di scuotimento ; Sismogrammi sintetici ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We use velocity measurements from a network of continuous GPS sites spanning the Apennines of peninsular Italy to test the hypothesis that the active deformation of the region is explained by variations in gravitational potential energy of the lithosphere. The simple geometry of the mountain chain allows us to treat the deformation as two-dimensional, neglecting gradients of velocity along the strike of the chain. Under this assumption, the integral of gravitational potential energy per unit area of the lithosphere (GPE) in the direction perpendicular to the chain is related by a simple expression to the velocity in the same direction. We show that the observed velocities match this expression with an RMS misfit of 0.5 mm/yr. This agreement suggests that deformation of the Apennines reflects a balance, within the mountain chain itself, between lateral variations in GPE and the stresses required to deform the lithosphere. Forces arising from processes external to the belt are not required to explain the observations.
    Description: Published
    Description: 121-132
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Apennines ; tectonics ; gravitational potential energy ; seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Calabro-Lucanian boundary is a complex geological zone marking the transition between the highly seismogenic tectonic domains of Southern Apennines and the Calabrian Arc. Historical catalogues include earthquakes with macroseismic effects up to VII-VIII MCS (CPTI WORKING GROUP, 2004) and paleoseismological investigations suggested that earthquakes of magnitude between 6.5 and 7 may have occurred in this area, between the 6th and the 15th century (MICHETTI et alii, 2000). More recently, on 9 September 1998, an earthquake of moment magnitude M5.6 occurred at the north-western margin of the Pollino massif (GUERRA et alii, 2005; ARRIGO et alii, 2006) and since the second half of 2010 the same region was interested by a noteworthy seismic activity characterized by several swarms with thousands of events with a maximum magnitude of 3.6.
    Description: Published
    Description: 778 - 779
    Description: 2T. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: Calabro-Lucanian region ; earthquake location ; focal mechanism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: During the months of April and May 2010, a seismic sequence (here named “Pietralunga seismic sequence”) took place in the northeastern part of the Gubbio basin (Northern Apennines); this area is well known to be interested by a continuous background micro-seismic activity. The sequence was recorded both by the INGV National Seismic Network, and by the stations installed by the Project “AIRPLANE” (financially supported by MIUR-Italian Ministry of Education and Research) with the aim of investigating the seismogenetic processes in the Alto Tiberina Fault (ATF) system region. In this work we present the anisotropic results at four stations: ATFO, ATPC, ATPI, ATVO located around the northern termination of the Gubbio basin that well delimit both the seismic se- quence and the whole 2010 seismicity (about 2500 events). The study of seismic anisotropy has provided useful information for the interpretation and evaluation of the stress field and active crustal deformation. Seismic anisotropy can yield valuable information on upper crustal structure, fracture field, and presence of fluid-saturated rocks. Moreover, the large number of seismic waveforms recorded especially during the Pietralunga sequence allows us also to study the spatio-temporal changes of anisotropic parameters to better understand its evolution and the possible correlation to the presence and migration of fluids.
    Description: Published
    Description: Potenza
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: shear wave splitting , Gubbio basin, active stress field, Pietralunga seismic sequence ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On March 11th, 2011 (at 05:46:23 UTC) a megaearthquake (M 9.0) occurred near the NE coast of Honshu island ( Japan), originated near the subduction plate boundary between the Pacific and the North America plates. The epicenter has been located at about 130 km East of Sendai city, at a depth of about 32 km. This seismic event has been followed by a devastating tsunami. The location, the geometric parameters, the focal mechanism, are in agreement with the occurrence of the earthquake along the subduction plate boundary. The initial seismological analysis indicated that a surface of about 300 km x 150 km over the fault moved upwards of 30-40 m. The Tohoku-Oki INGV Team has made available a wide and multisciplinary expertise to investigate the different scientific issues concerning the earthquake. Indeed from Seismology to Geomorphology, from Remote Sensing to GPS, from Tsunami to Source Modeling the INGV Team has completed a wide range of analysis, obtaining relevant outcomes that are summarized in this work.
    Description: Published
    Description: 1-27
    Description: 2T. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: Tohoku-Oki earthquake; DInSAR; change detection:Tsunami ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...