ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-10
    Description: Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages approximately 1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacNeil, M Aaron -- Graham, Nicholas A J -- Cinner, Joshua E -- Wilson, Shaun K -- Williams, Ivor D -- Maina, Joseph -- Newman, Steven -- Friedlander, Alan M -- Jupiter, Stacy -- Polunin, Nicholas V C -- McClanahan, Tim R -- England -- Nature. 2015 Apr 16;520(7547):341-4. doi: 10.1038/nature14358. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland 4810, Australia [2] Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada [3] Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. ; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. ; 1] Department of Parks and Wildlife, Kensington, Perth, Western Australia 6151, Australia [2] Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia. ; Coral Reef Ecosystems Division, NOAA Pacific Islands Fisheries Science Center, Honolulu, Hawaii 96818, USA. ; 1] Australian Research Council Centre of Excellence for Environmental Decisions (CEED), University of Queensland, Brisbane, St Lucia, Queensland 4074, Australia [2] Wildlife Conservation Society, Marine Programs, Bronx, New York 10460, USA. ; School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. ; 1] Fisheries Ecology Research Lab, Department of Biology, University of Hawaii, Honolulu, Hawaii 96822, USA [2] Pristine Seas-National Geographic, Washington DC 20036, USA. ; Wildlife Conservation Society, Marine Programs, Bronx, New York 10460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855298" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biomass ; Conservation of Natural Resources/*methods/statistics & numerical data/*trends ; *Coral Reefs ; *Ecosystem ; Fisheries/*methods/standards/*statistics & numerical data ; Fishes/*physiology ; Herbivory ; Population Dynamics ; Predatory Behavior ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-22
    Description: Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of 〉90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, Nicholas A J -- Jennings, Simon -- MacNeil, M Aaron -- Mouillot, David -- Wilson, Shaun K -- England -- Nature. 2015 Feb 5;518(7537):94-7. doi: 10.1038/nature14140. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia. ; 1] Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 OHT, UK [2] School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. ; 1] Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia [2] Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, Queensland 4810, Australia. ; 1] Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia [2] ECOSYM, UMR CNRS-UM2 5119, Universite Montpellier 2, 34095 Montpellier Cedex, France. ; 1] Department of Parks and Wildlife, Kensington, Perth, Western Australia 6151, Australia [2] School of Plant Biology, Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607371" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Animals ; Anthozoa/*growth & development/*physiology ; Biodiversity ; *Climate Change ; *Coral Reefs ; *Ecosystem ; Fishes/physiology ; Indian Ocean ; Pacific Ocean ; Population Dynamics ; Seawater/analysis ; Seaweed/physiology ; Seychelles ; Symbiosis ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...