ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (73)
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stendardo, Ilaria; Kieke, Dagmar; Rhein, Monika; Gruber, Nicolas; Steinfeldt, Reiner (2015): Interannual to decadal oxygen variability in the mid-depth water masses of the eastern North Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 95, 85-98, https://doi.org/10.1016/j.dsr.2014.10.009
    Publication Date: 2023-01-13
    Description: The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A; Laufkötter, Charlotte; Vogt, Meike; Aumont, Olivier; Bopp, Laurent; Buitenhuis, Erik Theodoor; Doney, Scott C; Dunne, John; Gruber, Nicolas; Hashioka, Taketo; John, Jasmin; Le Quéré, Corinne; Lima, Ivan D; Nakano, Hideyuki; Séférian, Roland; Totterdell, Ian J (2015): On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 29(9), 1451-1470, https://doi.org/10.1002/2015GB005140
    Publication Date: 2023-01-13
    Description: We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.
    Keywords: File content; Uniform resource locator/link to file; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 27 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-27
    Keywords: 513; 514; 515; 516; 517; 518; 519; 523; 524; 525; 526; 527; 528; 529; 530; 532; 533; 535; 545; 547; 548; 550; 551; 556; 560; 566; 571; 575; 579; 584; 587; 589; 591; 592; 601; 603; 604; 609; 610; 611; 612; 613; 617; 619; 620; 622; 623; 625; 626; 627; 628; 629; 631; 632; 633; 634; 636; 637; 638; 639; 640; 643; 646; 649; 652; 655; 658; 662; 665; 668; 671; 673; 674; 675; 676; Calculated; CTD, SEA-BIRD SBE 43; CTD, Sea-Bird SBE 911plus; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Elevation of event; Event label; Latitude of event; Longitude of event; M82/2; M82/2_513-1; M82/2_514-1; M82/2_515-1; M82/2_516-1; M82/2_517-1; M82/2_518-1; M82/2_519-1; M82/2_523-1; M82/2_524-1; M82/2_525-1; M82/2_526-1; M82/2_527-1; M82/2_528-1; M82/2_529-1; M82/2_530-1; M82/2_532-1; M82/2_533-1; M82/2_535-1; M82/2_545-1; M82/2_547-1; M82/2_548-1; M82/2_550-1; M82/2_551-1; M82/2_556-1; M82/2_560-1; M82/2_566-1; M82/2_571-1; M82/2_575-1; M82/2_579-1; M82/2_584-1; M82/2_587-1; M82/2_589-1; M82/2_591-1; M82/2_592-1; M82/2_601-1; M82/2_603-1; M82/2_604-1; M82/2_609-1; M82/2_610-1; M82/2_611-1; M82/2_612-1; M82/2_613-1; M82/2_617-1; M82/2_619-1; M82/2_620-1; M82/2_622-1; M82/2_623-1; M82/2_625-1; M82/2_626-1; M82/2_627-1; M82/2_628-1; M82/2_629-1; M82/2_631-1; M82/2_632-1; M82/2_633-1; M82/2_634-1; M82/2_636-1; M82/2_637-1; M82/2_638-1; M82/2_639-1; M82/2_640-1; M82/2_643-1; M82/2_646-1; M82/2_649-1; M82/2_652-1; M82/2_655-1; M82/2_658-1; M82/2_662-1; M82/2_665-1; M82/2_668-1; M82/2_671-1; M82/2_673-1; M82/2_674-1; M82/2_675-1; M82/2_676-1; Meteor (1986); MULT; Multiple investigations; Northeast Atlantic; Oxygen; Pressure, water; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 1565304 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-27
    Keywords: Calculated; Celtic Sea; CTD, SEA-BIRD SBE 43; CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; Date/Time of event; Davis Strait; Density, sigma-theta (0); DEPTH, water; Elevation of event; Event label; Labrador Sea; Latitude of event; Longitude of event; M85/1; M85/1_693; M85/1_694; M85/1_695; M85/1_696; M85/1_697; M85/1_698; M85/1_699; M85/1_700; M85/1_701; M85/1_702; M85/1_703; M85/1_704; M85/1_705; M85/1_706; M85/1_708; M85/1_709; M85/1_710; M85/1_711; M85/1_714; M85/1_717; M85/1_719; M85/1_722; M85/1_724; M85/1_725; M85/1_726; M85/1_727; M85/1_731; M85/1_733; M85/1_735; M85/1_736; M85/1_738; M85/1_739; M85/1_740; M85/1_745; M85/1_746; M85/1_748; M85/1_749; M85/1_750; M85/1_751; M85/1_752; M85/1_753; M85/1_755; M85/1_756; M85/1_757; M85/1_758; M85/1_761; M85/1_763; M85/1_764; M85/1_765; M85/1_766; M85/1_767; M85/1_768; M85/1_771; M85/1_772; M85/1_773; M85/1_774; M85/1_775; M85/1_777; M85/1_778; M85/1_782; M85/1_783; M85/1_784; M85/1_785; M85/1_786; M85/1_787; M85/1_788; M85/1_793; M85/1_795; M85/1_796; M85/1_797; M85/1_798; M85/1_800; M85/1_801; M85/1_803; M85/1_804; M85/1_805; M85/1_806; M85/1_807; M85/1_809; M85/1_810; M85/1_811; M85/1_813; M85/1_814; M85/1_815; M85/1_816; M85/1_817; M85/1_818; M85/1_819; M85/1_820; M85/1_821; M85/1_822; M85/1_823; M85/1_824; M85/1_825; M85/1_826; M85/1_828; M85/1_829; M85/1_830; M85/1_831; M85/1_832; M85/1_833; M85/1_834; M85/1_835; M85/1_836; M85/1_837; M85/1_839; M85/1_840; M85/1_841; M85/1_842; M85/1_843; M85/1_844; M85/1_845; M85/1_846; M85/1_847; M85/1_848; Meteor (1986); Oxygen; Pressure, water; Salinity; South Atlantic Ocean; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 2243172 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gray, William Robert; Weldeab, Syee; Lea, David W; Rosenthal, Yair; Gruber, Nicolas; Donner, Barbara; Fischer, Gerhard (2018): The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): A global sediment trap calibration. Earth and Planetary Science Letters, 482, 607-620, https://doi.org/10.1016/j.epsl.2017.11.026
    Publication Date: 2024-02-16
    Description: The Mg/Ca of planktic foraminifera Globigerinoides ruber (white) is a widely applied proxy for tropical and sub-tropical sea-surface temperature. The accuracy with which temperature can be reconstructed depends on how accurately relationships between Mg/Ca and temperature and the multiple secondary controls on Mg/Ca are known; however, these relationships remain poorly quantified under oceanic conditions. Here, we present new calibrations based on 440 sediment trap/plankton tow samples from the Atlantic, Pacific and Indian Oceans, including 130 new samples from the Bay of Bengal/Arabian Sea and the tropical Atlantic Ocean. Our results indicate temperature, salinity and the carbonate system all significantly influence Mg/Ca in G. ruber (white). We propose two calibration models: The first model assumes pH is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.0 ± 0.8 %/°C (2 Sigma), a salinity sensitivity of 3.3 ± 2.2%/PSU and a pH sensitivity of -8.3 ± 7.7%/0.1 pH units; The second model assumes carbonate ion concentration ([CO3**2-]) is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.7 ± 0.8%/°C, a salinity sensitivity of 5.0 ± 3.0%/PSU and a [CO3**2-] sensitivity of -0.24 ± 0.11/µmol kg**1. In both models, the temperature sensitivity is significantly lower than the widely-applied sensitivity of 9.0 ± 0.6%/°C. Application of our new calibrations to down-core data from the Last Glacial Maximum, considering whole ocean changes in salinity and carbonate chemistry, indicate a cooling of 2.4 ± 1.6 °C in the tropical oceans if pH is the controlling parameter and 1.5 ± 1.4 °C if [CO3**2-] is the controlling parameter.
    Keywords: 110, M31/3-110.4_MSN1; 414; 601; Arabian Sea; Bay of Bengal; Bermuda; BIGSET; Cape Blanc; Carbonate ion; CB_trap; CBi3; Cenderawasih Bay; Day of study; Event label; Formosa Strait; Globigerinoides ruber white, Magnesium/Calcium ratio; GOC_trap; Guaymas Basin, Gulf of California; HAI; IMAGES VII - WEPAMA; Indian Ocean; JAM-1; JAM-2; JGOFS-IN-2; Latitude of event; Location; Longitude of event; M31/3; M31/3_MSN913; M32/5; M32/5_MSN974; M33/1; M33/1_MSN1007; Marion Dufresne (1995); MD122; MD122-PT10; MD122-PT12; MD122-PT17; MD122-PT18; MD122-PT26; Meteor (1986); MOOR; Mooring; Morphotype; MOZ1_trap; MOZ2; Mozambique Channel; MS-5; MSN; Multiple opening/closing net; NBBT-09; Oceanic Flux Program; off Cap Blanc; off south Java; OFP_trap; pH; POS344/1; Poseidon; Reference/source; Salinity; Sample ID; Sargasso Sea; SCIFF_site; SCS_M1s_trap; SCS_M2_trap; SCS_M3_trap; Sigma; Size fraction; SO119; SO119_MSN1284; Sonne; South China Sea; Sulu Sea; Temperature, water; Towed zooplankton net; Trap; TRAP; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 7480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-17
    Description: Marine phytoplankton are responsible for half of the global net primary production and perform multiple other ecological functions and services of the global ocean. These photosynthetic organisms comprise more than 4300 marine species, but their biogeographic patterns and the resulting species diversity are poorly known, mostly owing to severe data limitations. Here, we compile, synthesize, and harmonize marine phytoplankton occurrence data from the two largest biological occurrence archives (Ocean Biogeographic Information System; OBIS, and Global Biodiversity Information Facility; GBIF) and three recent data collections. The resulting PhytoBase data set contains over 1.36 million marine phytoplankton occurrence records (1.28 million at the level of species) for a total of 1704 species, spanning the principal groups of the Bacillariophyceae, Dinoflagellata, and Haptophyta as well as several other groups. This data compilation increases the amount of phytoplankton occurrence data available through the single largest contributing archive (OBIS) by 65%. Data span all ocean basins, latitudes and most seasons. Analyzing the oceanic inventory of sampled phytoplankton species richness at the broadest spatial scales possible, using a resampling procedure, we find that richness tends to saturate in the pantropics at ~93% of all species in our database, at ~64% in temperate waters, and at ~35% in the cold Northern Hemisphere, while the Southern Hemisphere remains underexplored. We provide metadata on the cruise, research institution, depth, and date for each occurrence record. Cell-counts for 193 763 records are also included. We strongly recommend consideration of global spatiotemporal biases in sampling intensity and varying taxonomic sampling scopes between research programs when analyzing the occurrence database. Including such information into statistical analysis tools, such as species distribution models, may serve to project the diversity, niches, and distribution of species in the contemporary and future ocean, opening the door for a quantification of macro-ecological phytoplankton patterns.
    Keywords: abundance data; autotrophic organisms; global ocean; marine microbes; occurrence data; species richness; taxonomic harmonization
    Type: Dataset
    Format: application/zip, 13.7 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Swan, Chantal; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte (2015): A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep Sea Research Part I: Oceanographic Research Papers, https://doi.org/10.1016/j.dsr.2015.12.002
    Publication Date: 2024-05-28
    Description: Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°x1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32 ± 5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. These publicly accessible results will guide future parameterizations of marine ecosystem models exploring the link between phytoplankton community structure and marine biogeochemical cycles.
    Type: Dataset
    Format: application/zip, 131.7 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-08
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-01
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-01
    Print ISSN: 0079-6611
    Electronic ISSN: 1873-4472
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...