ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Aim: The lives of juvenile leatherback turtles are amongst the most enigmatic of all marine mega-vertebrates. For these cryptic organisms, ocean models provide important insights into their dispersion from natal sites. Here, corroborated by fisheries bycatch data, we simulate spatio-temporal variation in hatchling dispersion patterns over five decades from the World's largest leatherback turtle nesting region. Location: Equatorial Central West Africa (3.5°N to −6°S) spanning the Gulf of Guinea in the North, Gabon and the Republic/Democratic Republic of the Congo in the South. Results: Due to dynamic oceanic conditions at these equatorial latitudes, dispersion scenarios differed significantly: (1) along the north to south gradient of the study region, (2) seasonally and (3) between years. From rookeries to the north of the equator, simulated hatchling retention rates within the Gulf of Guinea were very high (〉99%) after 6 months of drift, whilst south of the equator, retention rates were as low as c. 6% with the majority of simulated hatchlings dispersing west into the South Atlantic Ocean with the South Equatorial Current. Seasonal dispersion variability was driven by wind changes arising from the yearly north/southward migration of the intertropical convergence zone resulting in the increasing westerly dispersion of hatchlings throughout the hatching season. Annual variability in wind stress drove a long-term trend for decreased retention within the Gulf of Guinea and increased westerly dispersion into habitats in the South Atlantic Ocean. Main conclusions: Shifts in dispersion habitats arising from spatio-temporal oceanic variability expose hatchlings to different environments and threats that will influence important life history attributes such as juvenile growth/survival rates; anticipated to impact the population dynamics and size/age structure of populations into adulthood. The impacts of local and dynamic oceanic conditions thus require careful considerations, such as subregional management, when managing marine populations of conservation concern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ∼400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ∼60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at 〈100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ∼4-20 μmol m-2 d-1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-25
    Description: The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-12
    Description: Here, we show how seasonal changes in animal density drive strategic shifts in the activities of wildlife-watching operators. These shifts result in high viewing intensity when animal densities are low, highlighting the need for modifications to existing wildlife-watching guidelines. We used the endangered loggerhead sea turtle Caretta caretta as a model species that exhibits staggered departure from an important breeding area (Zakynthos, Greece, Mediterranean) over a 2-month period (July to August) when tourism is at a peak, to investigate changes in wildlife-watching strategies, zoning effectiveness and voluntary guideline compliance over time. We used a combination of direct land-based observations, global positioning system tracking (of wildlife-watching vessels and turtles) and models. The modelled number of turtles present in the breeding area decreased from 〉 200 in July to 〈 50 in August, while the intensity of turtle-viewing increased from a mean 1.5 to 6.1 wildlife-watching vessels per turtle-viewing event (i.e. concurrent and consecutive vessels observing a single turtle) over the same period, respectively. During this period, the wildlife-watching strategy changed and compliance to guidelines reduced (exacerbated by recreational vessels). However, wildlife-watching activity was limited to a highly restricted 0.95-km2 nearshore area, overlapping with just 9.5% of the core habitat area used by turtles. Our results have broad implications (whale watching etc.) by showing the importance of taking the number of animals available for viewing into consideration when assessing wildlife-watching activity and when designing viewing guidelines, particularly for populations where numbers noticeably fluctuate
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26 degrees N, 11 degrees S, SAMBA 34.5 degrees S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16 degrees N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-18
    Description: The Atlantic Subtropical Cells (STCs) are shallow wind‐driven overturning circulations connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres they are characterized by equatorward transport at thermocline level, upwelling at the equator and poleward Ekman transport in the surface layer. This study uses recent data from Argo oats complemented by ship sections at the western boundary as well as reanalysis products to estimate the meridional water mass transports and to investigate the vertical and horizontal structure of the STCs from an observational perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between the surface poleward ow and the thermocline equatorward ow. The latter is bounded by the 26.0 kg m‐3 isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern hemisphere water mass transport (9.0 ±1.1 Sv from the southern hemisphere compared to 2.9 ±1.3 Sv from the northern hemisphere) and that this transport is mostly confined to the western boundary. Compared to the asymmetric convergence at thermocline level, the wind‐driven Ekman divergence in the surface layer is more symmetric, being 20.4 ±3.1 Sv between 10°N and 10°S. The net poleward transports (Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data (5.5 ±0.8 Sv at 10°S and 6.4 ±1.4 Sv at 10°N). A diapycnal transport of about 4 Sv across the 26.0 kg m‐3 isopycnal is required in order to maintain the mass balance in the STC circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-29
    Description: The microbial community composition and its functionality was assessed for hydrothermal fluids and volcanic ash sediments from Haungaroa and hydrothermal fluids from the Brothers volcano in the Kermadec island arc (New Zealand). The Haungaroa volcanic ash sediments were dominated by epsilonproteobacterial Sulfurovum sp. Ratios of electron donor consumption to CO2 fixation from respective sediment incubations indicated that sulfide oxidation appeared to fuel autotrophic CO2 fixation, coinciding with thermodynamic estimates predicting sulfide oxidation as the major energy source in the environment. Transcript analyses with the sulfide-supplemented sediment slurries demonstrated that Sulfurovum prevailed in the experiments as well. Hence, our sediment incubations appeared to simulate environmental conditions well suggesting that sulfide oxidation catalyzed by Sulfurovum members drive biomass synthesis in the volcanic ash sediments. For the Haungaroa fluids no inorganic electron donor and responsible microorganisms could be identified that clearly stimulated autotrophic CO2 fixation. In the Brothers hydrothermal fluids Sulfurimonas (49%) and Hydrogenovibrio/Thiomicrospira (15%) species prevailed. Respective fluid incubations exhibited highest autotrophic CO2 fixation if supplemented with iron(II) or hydrogen. Likewise catabolic energy calculations predicted primarily iron(II) but also hydrogen oxidation as major energy sources in the natural fluids. According to transcript analyses with material from the incubation experiments Thiomicrospira/Hydrogenovibrio species dominated, outcompeting Sulfurimonas. Given that experimental conditions likely only simulated environmental conditions that cause Thiomicrospira/Hydrogenovibrio but not Sulfurimonas to thrive, it remains unclear which environmental parameters determine Sulfurimonas’ dominance in the Brothers natural hydrothermal fluids.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...