ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Red Sea  (2)
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (1)
  • 04.07. Tectonophysics  (1)
  • Elsevier  (4)
  • 2015-2019  (4)
  • 1
    Publication Date: 2021-06-15
    Description: An Mw 6.1, devastating earthquake, on April 6, 2009, struck the Middle Aterno Valley (Abruzzi Apennines, Italy) due to the activation of a poorly known normal fault system. Structural analysis of the fault population and investigation of the relationships with the Quaternary continental deposits through integrated field and laboratory techniques were conducted in order to reconstruct the long-term, tectono-sedimentary evolution of the basin and hypothesize the size of the fault segment. A polyphasic evolution of the Middle Aterno Valley is characterized by a conjugate, ∼E-W and ∼NS-striking fault system, during the early stage of basin development, and by a dip-slip, NW-striking fault system in a later phase. The old conjugate fault system controlled the generation of the largest sedimentary traps in the area and is responsible for the horst and graben structures within the basin. During the Early Pleistocene the E-W and NS system reactivated with dip-slip kinematics. This gave rise to intra-basin bedrock highs and a significant syn-tectonic deposition, causing variable thickness and hiatuses of the continental infill. Subsequently, since the end of the Early Pleistocene, with the inception of the NW-striking fault system, several NW-strands linked into longer splays and their activity migrated toward a leading segment affecting the Paganica-San Demetrio basin: the Paganica-San Demetrio fault alignment. The findings from this work constrain and are consistent with the subsurface basin geometry inferred from previous geophysical investigations. Notably, two major elements of the ∼E-W and ∼NS-striking faults likely act as transfer to the nearby stepping active fault systems or form the boundaries, as geometric complexities, that limit the Paganica-San Demetrio fault segment overall length to 19 ± 3 km. The resulting size of the leading fault segment is coherent with the extent of the 6 April 2009 L'Aquila earthquake causative fault. The positive match between the geologic long-term and coseismic images of the 2009 seismogenic fault highlights that the comprehensive reconstruction of the deformation history offers a unique contribution to the understanding faults seismic potential.
    Description: MIUR (Italian Ministry of Education, University and Research) project “FIRB Abruzzo - High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake”, ref. RBAP10ZC8K_005 and RBAP10ZC8K_007, and by Agreement INGV-DPC 2012–2021
    Description: Published
    Description: 30-66
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Quaternary geology ; L'Aquila earthquake ; structural geology ; Middle Aterno Valley ; neotectonics ; active fault ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Geological, geodetic and seismological data have been analyzed in order to frame the Lipari–Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW–SSE trending right-lateral strike-slip fault system named “Aeolian–Tindari–Letojanni” which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW–SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N–S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW–SSE trending Aeolian–Tindari–Letojanni fault system and to the WNW–ESE oriented Sisifo–Alicudi fault system. GPS data analysis displays ∼3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10−13 s−1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10−13 s−1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about −15 to −7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari–Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo–Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.
    Description: Published
    Description: 150-167
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Tyrrhenian sea ; Aeolian Archipelago ; Lipari–Vulcano complex ; Structural analysis ; GPS ; Seismological data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of King Saud University - Science 25 (2013): 217–228, doi:10.1016/j.jksus.2013.02.006.
    Description: The degradation of natural fish habitat in the ocean implies lost economic benefits. These value losses often are not measured or anticipated fully, and therefore they are mainly ignored in decisions to develop the coast for industrial or residential purposes. In such circumstances, the ocean habitat and its associated ecosystem are treated as if they are worthless. Measures of actual or potential economic values generated by fisheries in commercial markets can be used to assess a conservative (lower-bound) value of ocean habitat. With this information, one can begin to compare the values of coastal developments to the values of foregone ocean habitat in order to help understand whether development would be justified economically. In this paper, we focus on the economic value associated with the harvesting of commercial fish stocks as a relevant case for the Saudi Arabian portion of the Red Sea. We describe first the conceptual basis behind supply-side approaches to economic valuation. Next we review the literature on the use of these methods for valuing ocean habitat. We provide an example based on recent research assessing the bioeconomic status of the traditional fisheries of the Red Sea in the Kingdom of Saudi Arabia (KSA). We estimate the economic value of ecosystem services provided by the KSA Red Sea coral reefs, finding that annual per-unit values supporting the traditional fisheries only are on the order of $7000/km2. Finally, we develop some recommendations for refining future applications of these methods to the Red Sea environment and for further research.
    Description: This research is based on work supported by Award Nos. USA 00002 and KSA 00011 made by the King Abdullah University of Science and Technology (KAUST).
    Keywords: Ecosystem service ; Supply-side valuation ; Traditional fishery ; Red Sea ; Coral reef ; Bio-economics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 160 (2015): 222-234, doi:10.1016/j.rse.2015.01.019.
    Description: Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplankton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data coverage, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phytoplankton growth during the winter period (relative to the summer phytoplankton growth period). In contrast, most of the reef-bound coastal waters display equal or higher peak chlorophyll concentrations and equal or longer duration of phytoplankton growth during the summer period (relative to the winter phytoplankton growth period). The ecological and biological significance of the phytoplankton seasonal characteristics are discussed in context of ecosystem state assessment, and particularly to support further understanding of the structure and functioning of coral reef ecosystems in the Red Sea.
    Keywords: Phytoplankton phenology ; Ocean-color remote sensing ; ESA OC-CCI ; Coral reef ecosystems ; Monsoon ; Ecological indicators ; Red Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...