ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-06
    Description: Climate change and human activities have caused a shift in vegetation composition and soil biogeochemical cycles of alpine wetlands on the Tibetan Plateau. The primary goal of this study was to test for associations between community-weighted mean (CWM) traits, functional diversity, and soil properties during wetland drying. We collected soil samples and investigated the aboveground vegetation in swamp, swamp meadow, and typical meadow environments. Four CWM trait values (specific leaf area is SLA, leaf dry matter content is LDMC, leaf area is LA, and mature plant height is MPH) for 42 common species were measured across the three habitats; three components of functional diversity (functional richness, functional evenness, and functional divergence) were also quantified at these sites. Our results showed that the drying of the wetland dramatically altered plant community and soil properties. There was a significant correlation between CWM of traits and soil properties, but not a significant correlation between functional diversity and soil properties. Our results further showed that CWM-LA, CWM-SLA, and CWM-LDMC had positive correlations with soil readily available nutrients (available nitrogen, AN; available phosphorus, AP), but negative correlations with total soil nutrients (soil organic carbon is SOC, total nitrogen is TN, and total phosphorus is TP). Our study demonstrated that simple, quantitative plant functional traits, but not functional diversity, are directly related to soil C and N properties, and they likely play an important role in plant–soil interactions. Our results also suggest that functional identity of species may be more important than functional diversity in influencing ecosystem processes during wetland drying.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-31
    Description: Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost–climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-21
    Description: In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL), we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation. An apparent soil temperature threshold of 11 °C for FSOIL at 12 cm depth was observed in our data, where FSOIL rates greatly increase in variance above this threshold. We therefore focus our analyses of FSOIL on instances in which soil temperature values were above this threshold. Vegetation had the greatest effect on FSOIL rates, with plots beneath shrubs at all elevations, for all years, showing the greatest mean rates of FSOIL (6.07 μmol CO2 m−2 s−1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m−2 s−1) and plots located in open, forest gap (4.09 μmol CO2 m−2 s−1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained, and that maximum efflux rates occur during periods of average to below-average soil water availability. While vegetation was the variable most related to FSOIL, there is also strong interannual variability in fluxes determined by the interaction of annual precipitation and topography. These findings add to the current theoretical constructs related to the interactions of moisture and vegetation in biogeochemical cycles within topographically complex watersheds.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-07
    Description: Permafrost soils in arctic and boreal ecosystems store twice the amount of current atmospheric carbon that may be mobilized and released to the atmosphere as greenhouse gases when soils thaw under a warming climate. This permafrost carbon climate feedback is among the most globally important terrestrial biosphere feedbacks to climate warming, yet its magnitude remains highly uncertain. This uncertainty lies in predicting the rates and spatial extent of permafrost thaw and subsequent carbon cycle processes. Terrestrial ecosystem influences on surface energy partitioning exert strong control on permafrost soil thermal dynamics and are critical for understanding permafrost soil responses to climate change and disturbance. Here we review how arctic and boreal ecosystem processes influence permafrost soils and characterize key ecosystem changes that regulate permafrost responses to climate. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined in isolation, interactions between processes are less well understood. In particular connections between vegetation, soil moisture, and soil thermal properties affecting permafrost conditions could benefit from additional research. In particular, connections between vegetation, soil moisture, and soil thermal properties affecting permafrost could benefit from additional research. Changes in ecosystem distribution and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and disturbance regimes will all affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function and the net effects of multiple feedback processes operating across scales in space and time.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...