ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (4)
  • 2015-2019  (4)
  • 1
    Publication Date: 2017-05-22
    Description: A new adaptive habit model (AHM) grows ice crystals through vapor deposition while evolving ice particle properties, including shape and effective density. The AHM provides an opportunity to investigate observed microphysical processes through the computation of polarimetric variables and corroboration with microphysical model output. This study is unique because the polarimetric scattering calculations are computed using predicted microphysical parameters rather than a priori assumptions that are imposed within the scattering calculations in the forward simulator, allowing for a more effective comparison to radar observations. Through the simulation of a case in the Front Range of the Rocky Mountains in Colorado using the Advanced Research version of the Weather Research and Forecasting Model, it is found that the AHM approximates ice mass, shape, cloud vertical structure, and temporal evolution as reflected through polarimetric quantities compared to observations. AHM reflectivity magnitudes are similar to those observed with radar and are an improvement over spherical ice crystal assumptions. Further analyses are completed to examine the effect of microphysical processes on the evolution of the differential reflectivity and specific differential phase, both of which are simulated using the AHM. Simulations reveal a polarimetric response to ice crystal mass, number, size, density, and aspect ratio. While results reveal the need for model improvements (e.g., parameterizations for aggregation rate), testing forward-simulated radar fields against observations is a first step in the validation of model microphysical and precipitation processes.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-22
    Description: The bulk adaptive habit model (AHM) explicitly predicts ice particle aspect ratio, improving the representation of microphysical processes and properties, including ice–liquid-phase partitioning. With the unique ability to predict ice particle shape and density, the AHM is combined with an offline forward operator to produce fields of simulated polarimetric variables. An evaluation of AHM-forward-simulated dual-polarization radar signatures in an idealized Arctic mixed-phase cloud is presented. Interpretations of those signatures are provided through microphysical model output using the large-eddy simulation mode of the Weather Research and Forecasting Model. Vapor-grown ice properties are associated with distinct observable signatures in polarimetric radar variables, with clear sensitivities to the simulated ice particle properties, including ice number, size, and distribution shape. In contrast, the liquid droplet number has little influence on both polarimetric and microphysical variables in the case presented herein. Polarimetric quantities are sensitive to the dominating crystal habit type in a volume, with enhancements for aspect ratios much lower or higher than unity. This synthesis of a microphysical model and a polarimetric forward simulator is a first step in the evaluation of detailed AHM microphysics.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-01
    Description: Aggregation, the process by which two or more ice particles attach to each other, is typically observed in clouds that span a range of temperatures and is influenced by the crystal shape (habit). In this study, the resulting characteristics of ice–ice two-monomer aggregation is investigated, which is expected to improve microphysical parameterizations through more precise aggregate characteristics and in turn better predict the rate of aggregation and snow development. A systematic way to determine the aspect ratio of the aggregate was developed, which takes into account the expected falling orientations, overlap of each monomer, and any contact angle that may form through so-called constrained randomization. Distributions were used to obtain the most frequent aspect ratio, major axis, and minor axis of aggregated particles with respect to the monomer aspect ratio. Simulations were completed using the Ice Particle and Aggregate Simulator (IPAS), a model that uses predefined three-dimensional geometries, (e.g., hexagonal prisms) to simulate ice crystal aggregation and allows for variation in crystal size, shape, number, and falling orientation. In this study, after collection in a theoretical grid space, detailed information is extracted from the particles to determine the properties of aggregates. It was found that almost all monomer aspect ratios aggregate to less extreme aggregate aspect ratios at nearly the same rate. Newly formed aggregate properties are amenable to implementation into more sophisticated bulk microphysical models designed to predict and evolve particle properties, which is crucial in realistically evolving cloud ice mass distribution and for representing the collection process.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-23
    Description: Ice crystal habit significantly impacts ice crystal processes such as growth by vapor deposition. Despite this, most bulk microphysical models disregard this natural shape effect and assume ice to grow spherically. This paper focuses on how the evolution of ice crystal shape and choice of ice nucleation parameterization in the adaptive habit microphysics model (AHM) influence the lake-effect storm that occurred during intensive observing period 4 (IOP4) of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. This localized snowstorm produced total accumulated liquid-equivalent precipitation amounts up to 17.92 mm during a 16-h time period, providing a natural laboratory to investigate the ice–liquid partitioning within the cloud, various microphysical process rates, the accumulated precipitation magnitude, and its associated spatial distribution. Two nucleation parameterizations were implemented, and aerosol data from a size-resolved advanced particle microphysics (APM) model were ingested into the AHM for use in parameterizing ice and cloud condensation nuclei. Simulations allowing ice crystals to grow nonspherically produced 1.6%–2.3% greater precipitation while altering the nucleation parameterization changed the type of accumulating hydrometeors. In addition, all simulations were highly sensitive to the domain resolution and the source of initial and boundary conditions. These findings form the foundational understanding of relationships among ice crystal habit, nucleation parameterizations, and resultant cold-season mesoscale precipitation within detailed bulk microphysical models allowing adaptive habit.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...