ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (8)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (5)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress  (3)
  • 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms
  • Elsevier Science Limited  (9)
  • American Geophysical Union  (7)
  • 2015-2019  (16)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2020-12-15
    Description: We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna’s shallowplumbingsystemstructure.We findthatthe fissureeruptioncontributed~50,000tofSO2 or~30%of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive ventgraduallyvanishedon10August,markingaswitchofdegassingtowardtheNSEC.Onsetofdegassingat the NSEC was a precursory to explosive paroxysmal activity on 11–15 August.
    Description: Published
    Description: 7511-7519
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Records of SO2 flux emissions from Etna’sindividualventsallowcapturing shifts in volcanic activity ; Vent-resolved SO2 flux time series provide constraints on geometry of the shallow plumbing system ; Vent-resolved SO2 flux time series demonstrate SO2 flux increase precursory to paroxysmal (lava fountaining) activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-05
    Description: In summer 2013 a toxic and polluting gas blowout (19 tonnes day−1 CO2, 95 kg day−1 CH4) occurred from two shallow boreholes drilled at only 50 m from the International Airport of Rome (Italy), in the town of Fiumicino. Another gas blowout occurred in the same period from a borehole located offshore, 2 km away, also generating sea-water acidification; it lasted only a couple of days. Onshore, CO2was also diffusing fromholes within the soil, particularly toward the airport, generating a soil flux up to 1.8 tonnes day−1. In 3.5 months ~1500 tonnes of CO2 and 5.4 tonnes of CH4 were emitted in the atmosphere. Temporal monitoring of gas geochemistry indicates that in this area a mixing occurs between shallow and pressurized gas pockets, CO2-dominated, but with different chemical (i.e., He/CH4 ratio) and isotopic (3He/4He, δ13C-δDCH4) characteristics. Numerical simulation of CO2 dispersion in the atmosphere showed that dangerous air CO2 concentrations, up to lethal values, were only found near the vents at a height of 0.2 m. Fiumicino is a high blowout risk area, as CO2 rising through deep reaching faults pressurizes the shallowaquifer contained in gravels confined underneath shales of the Tiber delta deposits. The Fiumicino blowout is a typical example of dangerous phenomenon that may occur in urban context lying nearby active or recent volcanoes and requires quick response on hazard assessment by scientists to be addressed to civil protection and administrators.
    Description: Published
    Description: 54-65
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Endogenous gas blowout from shallow wells ; Chemical and isotopic composition of gas and water ; Viscous flux and diffuse soil gas flux measurements ; Simulation andmonitoring of air CO2 dispersion ; Hazard assessment ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) tomeasure SO2 and bromine monoxide (BrO) in the plume inMarch 2004 and June 2007, respectively. Additionally filter pack andmulticomponent gas analyzer system (Multi-GAS)measurements were carried out in June 2007. Ourmeasurements provide valuable information on the chemical composition of the volcanic plume emitted fromthe lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Measurement data and results from a numerical model of the evolution of BrO in Nyiragongo volcanic plume are compared with earlier studies of the volcanic plume of Etna (Italy). Even though the bromine flux from Nyiragongo (2.6 t/d) is slightly greater than that from Etna (1.9 t/d), the BrO/SO2 ratio (maximum 7 × 10 5) is smaller than in the plume of Etna (maximum 2.1 × 10 4). A one-dimensional photochemical model to investigate halogen chemistry in the volcanic plumes of Etna and Nyiragongo was initialized using data from Multi-GAS and filter pack measurements. Model runs showed that the differences in the composition of volcanic volatiles led to a smaller fraction of total bromine being present as BrO in the Nyiragongo plume and to a smaller BrO/SO2 ratio.
    Description: Published
    Description: 277-291
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Intraplate volcano Nyiragongo is bromine rich although chlorine poor ; BrO/Br in volcanic plumes depends on initial plume composition ; Determination of Nyiragongo chlorine, bromine, sulfur emission strength ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Description: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Description: Published
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: An automatic analysis code called ANISOMAT+ has been developed and improved to automatically retrieve the crustal anisotropic parameters fast polarization direction (ϕ) and delay time (δt) related to the shear wave splitting phenomena affecting seismic S-wave. The code is composed of a set of MatLab scripts and functions able to evaluate the anisotropic parameters from the three-component seismic recordings of local earthquakes using the cross-correlation method. Because the aim of the code is to achieve a fully automatic evaluation of anisotropic parameters, during the development of the code we focus our attention to devise several automatic checks intended to guarantee the quality and the stability of the results obtained. The basic idea behind the development of this automatic code is to build a tool able to work on a huge amount of data in a short time, obtaining stable results and minimizing the errors due to the subjectivity. These behaviors, coupled to a three component digital seismic network and a monitoring system that performs automatic pickings and locations, are required to develop a real-time monitoring of the anisotropic parameters.
    Description: Published
    Description: 62-68
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: shear wave splitting, Earthquake forecast, Anisotropy, Cross-correlation method ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater’s rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000–7000 ppm in low-wind conditions and pose a health hazard for visitors.
    Description: Published
    Description: 5398–5413
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanogenic carbon dioxide plume ; Air CO2 concentration ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This work integrates existing structural geology data with new detailed geomorphic analyses of the fluvial network to characterize active and potentially seismogenic faults bordering the Lunigiana and Garfagnana basins in the northern Apennines of Italy. These two basins are NW–SE-oriented asymmetric grabens, bordered by several normal faults with a poorly known, but probable recent slip history. Several strong earthquakes (M 5.0–6.5) have occurred in the area in the last millennium, demonstrating that this is one of the most seismically active areas of the northern Apennines. However, the lack of reliable instrumental data for strong earthquakes, generally low deformation rates, and poor exposures of faulted Quaternary sediments render the characterization of active, seismogenic faults problematic. Here, we quantify the relationships between faults and watershed-scale geomorphology using 10-m digital topography to extract channel and basin metrics, such as steepness, concavity, and stream length-gradient indices of modeled river longitudinal profiles. In particular, convex segments of longitudinal profiles (knickpoints) are investigated in the spatial context of suspected active faults. Several knickpoints arise locally from juxtaposed rock types of different erodibility; however, many others mapped along major normal faults have a clear tectonic origin. In fact, the height of the footwall knickpoints (the closest to the fault trace) varies along-strike the fault, increasing toward the fault center and tapering off toward the fault tips, mimicking the expected displacement profile of a fault. In these cases, we consider the knickpoint height as a proxy of the fault throw accumulated by the youngest fault activity, probably during the late Quaternary. The along-strike distribution of knickpoint heights helps in defining the likely segmentation pattern of the fault system. The identified active normal fault segments have lengths ranging from 9.5 to 28.5 km. The inferred late Quaternary throw rate ranges from 0.3 to 0.8 mm/a; however, the absence of any offset datable material limits our ability to assign precise numeric ages and rates of offset to the faulting.
    Description: Published
    Description: 293-311
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Northern Apennines ; Active fault ; Normal fault ; Tectonic geomorphology ; Knickpoint ; Geomorphic indices ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this study we use Synthetic Aperture Radar Differential Interferometry (DInSAR) and seismological data to constrain the source of the mainshock of the 2013 Lunigiana (North-western Italy) seismic sequence, namely an Mw 5.1 event occurred on 2013 June 21. The sequence took place in a transfer zone located between the Lunigiana (North) and Garfagnana (South) graben. As the destructive Mw 6.2 earthquake occurred in 1920 has demonstrated, this area is seismically active and is considered the most hazardous area of the Northern Apennines. Hypocentre relocations of the Lunigiana sequence aftershocks are well fitted by a ~45° N-dipping fault plane, whereas the focal mechanism solution yields a dip-slip mechanism with a slight right-lateral strike-slip component. Surface displacements estimated from ascending COSMO-SkyMed imagery acquired in the time-span of a single day around the mainshock were used to derive an elastic dislocationmodel. The estimated slip distributions computed on fixed and variable size meshes showpeak values of 30 cmand 40 cmrespectively. Static stress variation analysis was performed to analyze possible stress overloads on the closest seismogenic sources. Our results provide insight into the tectonics of the Northern Apennines, suggesting the fundamental role of transfer fault zones in intra-mountain basin origin and in the assessment of seismic hazard in an extensional tectonic regime.
    Description: Published
    Description: 315-324
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Lunigiana earthquake ; Northern Apennines ; InSAR measurements ; Seismic source modelling ; CFF variations ; Seismic sequence relocation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Naples is a large city located between two active volcanic areas: Campi Flegrei to theWand Vesuvius to the SE. The Solfatara crater, inside the caldera of the Campi Flegrei and nearest to the western quarters of the city, is a prodigious source of natural CO2 with a mean emission rate of 1067 ton/d, i.e. seven times higher than that of Vesuvius(151 ton/d). This study shows that the area around the Solfatara and part of the urban area of Naples are affected by the volcanic plume when atmospheric circulatory patterns are dominated by the locally frequent sea breezes. Under these conditions the CO2 content in the air increases above normal values, reaching more than 1000 ppm in proximity to the Solfatara crater to a few tens of ppm several kilometres from the source. Although these values do not indicate a health risk even under the most unfavourable atmospheric conditions, the volcanic source contributes to the total CO2 burden from all urban emissions and hence to overall air quality. An emission rate ten times higher than the present one would lead to an air CO2 concentration in excess of recommended health protection thresholds.
    Description: Published
    Description: 52-61
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 dispersion; Solfatara; Gas hazard; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...