ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-02-06
    Description: Melt inclusions and hosting them highly magnesian olivine from rocks of Kamchatka and the Western Aleutian island arc were analyzed for copper content by LA-ICP-MS to determine the copper partition coefficient in primitive island-arc magmas. Based on measurements of 45 olivine–melt pairs, this coefficient was determined to be 0.028 ± 0.009 (2σ), which is the lowest value among previously published data. Mass-balance calculations of copper in a typical mantle peridotite using obtained partition coefficient indicate that its content in peridotite and primary mantle magmas is mainly determined by mantle sulfide. The Cu partition coefficient was also used to calculate the copper content in parental magmas of volcanoes of the Central Kamchatka Depression. Estimates obtained using copper content in phenocrysts of primitive olivine (Fo 〉 88 mol %) from these rocks are, on average, 139 ± 58 ppm (2σ), which exceed copper contents in primitive basalts (MgO 〉 8.5 wt %) of mid-ocean ridges (MORB 93 ± 31 ppm). This suggests the primary enrichment of Central Kamchatka magmas in copper and correlates with their more oxidizing conditions of formation as compared to MORB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-06
    Description: The susceptibility of native and non-native populations of the red alga Gracilaria vermiculophylla to fouling was compared in common garden experiments. Native and non-native algae were enclosed into dialysis membrane tubes, and the tubes were exposed to natural fouling. Fouling on the outside of the tubes was mediated by chemical compounds excreted by G. vermiculophylla that diffused through the membranes. Fouling pressure was significantly higher in the Kiel Fjord (non-native range) than in Akkeshi Bay (native range), but, at both sites, tubes containing non-native G. vermiculophylla were less fouled than those with native conspecifics. This is the first in situ evidence that susceptibility to fouling differs between native and non-native populations of an aquatic organism. The technique of enclosing organisms into dialysis tubes represents a simple, efficient and accurate way to test chemical antifouling defenses and could possibly be applied to other organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-08
    Description: Marine top predators forage in environments that show potentially extreme temporal and spatial variation in prey availability, with reproductive success being crucially linked to food supply. Multiple factors of interannual and sexual variation, as well as variation across breeding stages, can shape patterns of spatial use in foraging seabirds, yet studies that address all of these variables simultaneously are rare. We present spatial assessment of foraging patterns by µGPS tracking of a sexually size monomorphic, long-lived species, the Australasian gannet (Morus serrator). The study spanned the incubation and chick-rearing stages in three consecutive breeding seasons. Our findings revealed high interannual variability in foraging distances and trip durations, but no consistent differences between birds across different breeding stages or the sexes. The exception was that core foraging areas were different for female and male Australasian gannets, although trip durations or distances were similar for both sexes. Our results also indicate bimodality in foraging distance and trip duration in this species, while highlighting interannual variability in the extent of bimodality. These findings contribute to a scarcely documented type of foraging behaviour in the seabird family of the Sulidae. Overall, these spatial use patterns provide a baseline for understanding the evolution of sex-specific foraging differences in biparental seabirds, and the extent to which these differences might help in securing breeding success across years of variable food availability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-08
    Description: Stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) in the ocean are generally not well understood as they are governed by a complex interplay of biological processes and air–sea exchange. In the Arctic Ocean, δ13CDIC values are prone to change in the near future with rapidly changing climate conditions. This study provides a baseline to assess the δ13CDIC of the Arctic Ocean with a focus on upper to intermediate waters (to ~500 m). Measured δ13CDIC values in the Arctic Ocean range from ~−0.6 to +2.2 ‰. In the Eurasian Basin, the δ13CDIC values lie between ~1 and 1.5 ‰ and exhibit little variation within the upper layers. In the Canada Basin, δ13CDIC values reach 2 ‰ in the surface layer, with lowest values of ~−0.6 ‰ found at ~200 m water depth. At greater depth, δ13CDIC values range from ~1 to 1.5 ‰ within both basins. In the Canada Basin, nutrient levels are higher than in the Eurasian Basin and associated variations in δ13CDIC are clearly related to biological processes. However, low δ13CDIC values in the Canada Basin are also strongly influenced by non-equilibrium air–sea exchange processes. The different δ13CDIC patterns between the Canada Basin and the Eurasian Basin appear to be linked to differences in transport processes within the Arctic Ocean halocline. The upper layers in the Canada basins have direct contributions of waters from the Laptev, East Siberian and Chukchi shelves, which contain elevated fractions of river waters and sea-ice related brines, whereas their counterparts, in the Eurasian Basin, are mostly formed by halocline waters from the Barents and Kara seas. River waters have low δ13CDIC of ~−8 ‰ on average, but in the Arctic basins this signal is mostly lost and δ13CDIC values show only a weak correlation to river water fractions contained in the water mass. No relation between δ13CDIC and sea-ice related brine contribution is apparent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-01-18
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-01-19
    Description: A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2–4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer
    In:  In: Encyclopedia of Marine Geosciences. , ed. by Harff, J., Meschede, M., Petersen, S. and Thiede, J. Springer, Dordrecht, pp. 917-923. ISBN 978-94-007-6239-4
    Publication Date: 2018-01-19
    Description: Definition Volcanogenic Massive Sulfides. Accumulations of dominantly sulfide minerals that form at sites of focused hydrothermal discharge on the seafloor. Also refers to a class of ore deposit mined from ancient oceanic crust that is now exposed on land.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: Global-scale studies of marine food webs are rare, despite their necessity for examining and understanding ecosystem level effects of climate variability. Here we review the progress of an international collaboration that compiled regional diet datasets of multiple top predator fishes from the Indian, Pacific and Atlantic Oceans and developed new statistical methods that can be used to obtain a comprehensive ocean-scale understanding of food webs and climate impacts on marine top predators. We loosely define top predators not as species at the apex of the food web, but rather a guild of large predators near the top of the food web. Specifically, we present a framework for world-wide compilation and analysis of global stomach-contents and stable-isotope data of tunas and other large pelagic predatory fishes. To illustrate the utility of the statistical methods, we show an example using yellowfin tuna in a “test” area in the Pacific Ocean. Stomach-contents data were analyzed using a modified (bagged) classification tree approach, which is being prepared as an R statistical software package. Bulk δ15N values of yellowfin tuna muscle tissue were examined using a Generalized Additive Model, after adjusting for spatial differences in the δ15N values of the baseline primary producers predicted by a global coupled ocean circulation-biogeochemical-isotope model. Both techniques in tandem demonstrated the capacity of this approach to elucidate spatial patterns of variations in both forage species and predator trophic positions and have the potential to predict responses to climate change. We believe this methodology could be extended to all marine top predators. Our results emphasize the necessity for quantitative investigations of global-scale datasets when evaluating changes to the food webs underpinning top ocean predators under long-term climatic variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-06
    Description: A set of ensemble integrations from the Coupled Model Intercomparison Project phase 5, with historical forcing plus RCP4.5 scenario, are used to explore if state-of-the-art climate models are able to simulate previously reported linkages between sea-ice concentration (SIC) anomalies over the eastern Arctic, namely in the Greenland–Barents–Kara Seas, and lagged atmospheric circulation that projects on the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO). The study is focused on variability around the long-term trends, so that all anomalies are detrended prior to analysis; the period of study is 1979–2013. The model linkages are detected by applying maximum covariance analysis. As also found in observational data, all the models considered here show a statistically significant link with sea-ice reduction over the eastern Arctic followed by a negative NAO/AO-like pattern. If the simulated relationship is found at a lag of one month, the results suggest that a stratospheric pathway could be at play as the driving mechanism; in observations this is preferentially shown for SIC in November. The interference of a wave-like anomaly over Eurasia, accompanying SIC changes, with the climatological wave pattern appears to be key in setting the mediating role of the stratosphere. On the other hand, if the simulated relationship is found at a lag of two months, the results suggest that tropospheric dynamics are dominant, presumably due to transient eddy feedback; in observations this is preferentially shown for SIC in December. The results shown here and previous evidence from atmosphere-only experiments emphasize that there could be a detectable influence of eastern Arctic SIC variability on mid-latitude atmospheric circulation anomalies. Even if the mechanisms are robust among the models, the timing of the simulated linkages strongly depends on the model and does not generally mimic the observational ones. This implies that the atmospheric sensitivity to sea-ice changes largely depends on the mean-flow and parameterizations, which could lead to misleading conclusions elsewhere if a multi-model ensemble-mean approach is adopted. It might also represent an important source of uncertainty in climate prediction and projection. Modelling efforts are hence further required to improve representation of the background atmospheric circulation and reduce biases, in order to attain more accurate covariability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-09-23
    Description: Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...