ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-16
    Description: Dimethyl sulfide (DMS) plays a major role in the global sulfur cycle. In addition, its atmospheric oxidation products contribute to the formation and growth of atmospheric aerosol particles, thereby influencing cloud condensation nuclei (CCN) populations and thus cloud formation. The pristine summertime Arctic atmosphere is a CCN-limited regime, and is thus very susceptible to the influence of DMS. However, atmospheric DMS mixing ratios have only rarely been measured in the summertime Arctic. During July–August 2014, we conducted the first high time resolution (10 Hz) DMS mixing ratio measurements for the Eastern Canadian Archipelago and Baffin Bay as one component of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE). DMS mixing ratios ranged from below the detection limit of 4 to 1155 pptv (median 186 pptv). A set of transfer velocity parameterizations from the literature coupled with our atmospheric and coincident seawater DMS measurements yielded air-sea DMS flux estimates ranging from 0.02–12 μmol m−2 d−1, the first published for this region in summer. Airmass trajectory analysis using FLEXPART-WRF and chemical transport modeling using GEOS-Chem indicated that local sources (Lancaster Sound and Baffin Bay) were the dominant contributors to the DMS measured along the 21 day ship track, with episodic transport from the Hudson Bay System. After adjusting GEOS-Chem oceanic DMS values in the region to match measurements, GEOS-Chem reproduced the major features of the measured time series, but remained biased low overall (median 67 pptv). We investigated non-marine sources that might contribute to this bias, such as DMS emissions from lakes, biomass burning, melt ponds and coastal tundra. While the local marine sources of DMS dominated overall, our results suggest that non-local and possibly non-marine sources episodically contributed strongly to the observed summertime Arctic DMS mixing ratios.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-25
    Description: Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of emissions originating from the Canadian Coast Guard Amundsen icebreaker operating near Resolute Bay, NU, Canada have been investigated. The Amundsen burnt distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercepts by research aircraft were carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercept measurements were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under icebreaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory Black Carbon (rBC), and Cloud Condensation Nuclei (CCN). The results were compared to similar experimental studies in mid latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.80, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates are smaller than prior studies conducted at mid latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid latitudes. All emission factors were in agreement with prior observations at low engine loads in mid latitudes. Icebreaking increased the NOx emission factor from EFNOx = 22.3 ± 8.0 to 57.8 ± 11.0 and 65.8 ± 4.0 g kg–diesel−1 for plumes 1, 2, and 3, likely due to change in combustion temperatures. The CO emission factor was EFCO = 6.4 ± 11.7, 6.8 ± 2.2 and 5.0 ± 1.0 g kg–diesel−1 for plumes 1, 2, and 3. The rBC emission factor was EFrBC = 0.20 ± 0.04 and 0.25 ± 0.12 g kg–diesel−1 for plumes 1 and 2. The CN emission factor was reduced while icebreaking from EFCPC = 1.96 ± 0.41 to 0.43 ± 0.11 and 0.47 ± 0.04 × 1016 kg–diesel−1 for plumes 1, 2, and 3. At 0.6 % supersaturation, the CCN emission factor was lower than observations in mid latitudes at low engine loads with EFCCN = 1.63 ± 0.41 to 1.06 ± 0.32 and 0.28 ± 0.07 × 1014 kg–diesel−1 for plumes 1, 2, and 3.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-02
    Description: Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30–650 ng m−3 (40–870 pptv) with the highest values recorded in Lancaster Sound (74°13' N, 84°00' W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface–air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (〈 0.4–10 ng m3) indicating these surface pools are net sinks of NH3(g). Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m-2 s-1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea salt sulphate (nss-SO42-) in the boundary layer during most of the study. This finding was corroborated with a historical dataset of PM2.5 composition from Alert, NU (82°30' N, 62°20' W) wherein the median ratio of NH4+/nss-SO42- equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42- neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42- neutralization. This is strong evidence that seabird colonies are significant sources of NH3(g) in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3(g), but their influence was probably limited to the Central Canadian Arctic. Implications of seabird-derived N-deposition to terrestrial and aquatic ecosystems are also discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-07
    Description: In this study, we quantify the impacts of shipping pollution on air quality and shortwave radiative effect in northern Norway, using WRF-Chem simulations combined with high resolution, real-time STEAM2 shipping emissions. STEAM2 emissions are evaluated using airborne measurements from the ACCESS campaign, which was conducted in summer 2012, in two ways. First, emissions of NOx and SO2 are derived for specific ships from in-situ measurements in ship plumes and FLEXPART-WRF plume dispersion modeling, and these values are compared to STEAM2 emissions for the same ships. Second, regional WRF-Chem runs with and without ship emissions are performed at two different resolutions, 3 km × 3 km and 15 km × 15km, and evaluated against measurements along flight tracks and average campaign profiles in the marine boundary layer and lower troposphere. These comparisons show that differences between STEAM2 emissions and calculated emissions can be quite large (−57 to +148 %) for individual ships, but that WRF-Chem simulations using STEAM2 emissions reproduce well the average NOx, SO2 and O3 measured during ACCESS flights. The same WRF-Chem simulations show that the magnitude of NOx and O3 production from ship emissions at the surface is not very sensitive (〈 5 %) to the horizontal grid resolution (15 or 3 km), while surface PM10 enhancements due to ships are moderately sensitive (15 %) to resolution. The 15 km resolution WRF-Chem simulations are used to estimate the local and regional impacts of shipping pollution in northern Norway. Our results indicate that ship emissions are an important local source of pollution, enhancing 15 day averaged surface concentrations of NOx (∼ +80 %), O3 (∼ +5 %), black carbon (∼ +40 %) and PM2.5 (∼ +10 %) along the Norwegian coast. Over the same period ship emissions in northern Norway have a shortwave (direct + semi-direct + indirect) radiative effect of −9.3 m W m-2 at the global scale.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-15
    Description: The ability of six global and one regional model to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over Asia in summer 2008 is evaluated using satellite and in-situ observations. Whilst ozone precursors (NO2 and CO) are generally underestimated by the models in the troposphere, surface NO2 concentrations are overestimated, suggesting that emissions of NOx are too high. Ozone integrated columns and vertical profiles are generally well modeled, but the global models face difficulties simulating the ozone gradient at the surface between urban and rural environments, pointing to the need to increase model resolution. The accuracy of simulated aerosol patterns over eastern China and northern India varies between the models, and although most of the models reproduce the observed pollution features over eastern China, significant biases are noted in the magnitude of optical properties (aerosol optical depth, aerosol backscatter). These results have important implications for accurate prediction of pollution episodes affecting air quality and the radiative effects of these short-lived climate pollutants over Asia.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-17
    Description: A model intercomparison activity was inspired by the large suite of observations of atmospheric composition made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models participated in this intercomparison and performed simulations for 2008 using a common emissions inventory to assess the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Each type of measurement has some limitations in spatial or temporal coverage or in composition, but together they assist in quantifying the limitations of the models in the Arctic and surrounding regions. Despite using the same emissions, large differences are seen among the models. The cloud fields and photolysis rates are shown to vary greatly among the models, indicating one source of the differences in the simulated chemical species. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. Satellite observations of NO2 from the OMI (Ozone Monitoring Instrument) have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde but underestimate ethanol, propane and acetone, while overestimating ethane emission factors.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-31
    Description: The ability of seven state-of-the-art chemistry–aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data. Several rather clear biases are found between model results and observations, including overestimation of ozone at rural locations downwind of the main emission regions in China, as well as downwind over the Pacific. Several models produce too much ozone over polluted regions, which is then transported downwind. Analysis points to different factors related to the ability of models to simulate VOC-limited regimes over polluted regions and NOx limited regimes downwind. This may also be linked to biases compared to satellite NO2, indicating overestimation of NO2 over and to the north of the northern China Plain emission region. On the other hand, model NO2 is too low to the south and west of this region and over South Korea/Japan. Overestimation of ozone is linked to systematic underestimation of CO particularly at rural sites and downwind of the main Chinese emission regions. This is likely to be due to enhanced destruction of CO by OH. Overestimation of Asian ozone and its transport downwind implies that radiative forcing from this source may be overestimated. Model-observation discrepancies over Beijing do not appear to be due to emission controls linked to the Olympic Games in summer 2008.With regard to aerosols, most models reproduce the satellite-derived AOD patterns over eastern China. Our study nevertheless reveals an overestimation of ECLIPSE model mean surface BC and sulphate aerosols in urban China in summer 2008. The effect of the short-term emission mitigation in Beijing is too weak to explain the differences between the models. Our results rather point to an overestimation of SO2 emissions, in particular, close to the surface in Chinese urban areas. However, we also identify a clear underestimation of aerosol concentrations over northern India, suggesting that the rapid recent growth of emissions in India, as well as their spatial extension, is underestimated in emission inventories. Model deficiencies in the representation of pollution accumulation due to the Indian monsoon may also be playing a role. Comparison with vertical aerosol lidar measurements highlights a general underestimation of scattering aerosols in the boundary layer associated with overestimation in the free troposphere pointing to modelled aerosol lifetimes that are too long. This is likely linked to too strong vertical transport and/or insufficient deposition efficiency during transport or export from the boundary layer, rather than chemical processing (in the case of sulphate aerosols). Underestimation of sulphate in the boundary layer implies potentially large errors in simulated aerosol–cloud interactions, via impacts on boundary-layer clouds.This evaluation has important implications for accurate assessment of air pollutants on regional air quality and global climate based on global model calculations. Ideally, models should be run at higher resolution over source regions to better simulate urban–rural pollutant gradients and/or chemical regimes, and also to better resolve pollutant processing and loss by wet deposition as well as vertical transport. Discrepancies in vertical distributions require further quantification and improvement since these are a key factor in the determination of radiative forcing from short-lived pollutants.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-10
    Description: During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (〉 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (〉 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-31
    Description: Using observations from aircraft, surface stations and a satellite instrument, we comprehensively evaluate multi-model simulations of carbon monoxide (CO) and ozone (O3) in the Arctic and over lower latitude emission regions, as part of the POLARCAT Model Inter-comparison Project (POLMIP). Evaluation of 11- atmospheric models with chemistry shows that they generally underestimate CO throughout the Arctic troposphere, with the largest biases found during winter and spring. Negative CO biases are also found throughout the Northern Hemisphere, with multi-model mean gross errors (9–12%) suggesting models perform similarly over Asia, North America and Europe. A multi-model annual mean tropospheric OH (10.8 ± 0.6 × 105 molec cm−3) is found to be slightly higher than previous estimates of OH constrained by methyl chloroform, suggesting negative CO biases in models may be improved through better constraints on OH. Models that have lower Arctic OH do not always show a substantial improvement in their negative CO biases, suggesting that Arctic OH is not the dominant factor controlling the Arctic CO burden in these models. In addition to these general biases, models do not capture the magnitude of CO enhancements observed in the Arctic free troposphere in summer, suggesting model errors in the simulation of plumes that are transported from anthropogenic and biomass burning sources at lower latitudes. O3 in the Arctic is also generally underestimated, particularly at the surface and in the upper troposphere. Summer O3 comparisons over lower latitudes show several models overestimate upper tropospheric concentrations. Simulated CO, O3 and OH all demonstrate a substantial degree of inter-model variability. Idealised CO-like tracers are used to quantitatively compare the impact of inter-model differences in transport and OH on CO in the Arctic troposphere. The tracers show that model differences in transport from Europe in winter and from Asia throughout the year are important sources of model variability at Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed-lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. Model OH concentrations are correlated with H2O concentrations, suggesting water vapour concentrations are linked to differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-03
    Description: We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (〉 50° N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multi-model comparison exercise. In model air masses dominated by fire emissions, ΔO3/ΔCO values ranged between 0.039 and 0.196 ppbv ppbv−1 (mean: 0.113 ppbv ppbv−1) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppbv−1 (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model ΔPAN/ΔCO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger ΔPAN/ΔCO values (4.47 to 7.00 pptv ppbv−1) than GEOS5-forced models (1.87 to 3.28 pptv ppbv−1), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...