ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (60)
  • American Association for the Advancement of Science (AAAS)  (60)
  • Cambridge University Press
  • Wiley
  • 2015-2019  (6)
  • 1980-1984  (54)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-06-20
    Description: The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minajigi, Anand -- Froberg, John E -- Wei, Chunyao -- Sunwoo, Hongjae -- Kesner, Barry -- Colognori, David -- Lessing, Derek -- Payer, Bernhard -- Boukhali, Myriam -- Haas, Wilhelm -- Lee, Jeannie T -- R01-DA-38695/DA/NIDA NIH HHS/ -- R03-MH97478/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Massachusetts General Hospital Cancer Center, Charlestown, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA, USA. ; Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. lee@molbio.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089354" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Cells, Cultured ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Fibroblasts/metabolism ; Gene Knockdown Techniques ; Gene Silencing ; Mice ; Multiprotein Complexes/metabolism ; Nucleic Acid Conformation ; Proteomics ; RNA Helicases/metabolism ; RNA, Long Noncoding/*metabolism ; X Chromosome/chemistry/genetics/*metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-07
    Description: In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Notta, Faiyaz -- Zandi, Sasan -- Takayama, Naoya -- Dobson, Stephanie -- Gan, Olga I -- Wilson, Gavin -- Kaufmann, Kerstin B -- McLeod, Jessica -- Laurenti, Elisa -- Dunant, Cyrille F -- McPherson, John D -- Stein, Lincoln D -- Dror, Yigal -- Dick, John E -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):aab2116. doi: 10.1126/science.aab2116. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK. ; Ecole Polytechnique Federale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland. ; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; The Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. jdick@uhnres.utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541609" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antigens, CD34/analysis ; Cell Lineage/genetics/*physiology ; Cell Separation ; Cells, Cultured ; Erythroid Cells/*cytology ; Fetal Blood/cytology ; Gene Expression Profiling ; Hematopoiesis/genetics/*physiology ; Humans ; Liver/cytology/embryology ; Megakaryocyte Progenitor Cells/*cytology ; Megakaryocytes/*cytology ; Multipotent Stem Cells/cytology ; Myeloid Cells/*cytology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-11-07
    Description: An analog of luteinizing hormone-releasing hormone containing a gamma-lactam as a conformational constraint has been prepared with the use of a novel cyclization of a methionine sulfonium salt. The analog is more active as a luteinizing hormone-releasing hormone agonist that the parent hormone, and provides evidence for a bioactive conformation containing a beta-turn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freidinger, R M -- Veber, D F -- Perlow, D S -- Brooks, J R -- Saperstein, R -- New York, N.Y. -- Science. 1980 Nov 7;210(4470):656-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7001627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Assay ; Cells, Cultured ; Female ; *Gonadotropin-Releasing Hormone/analogs & derivatives ; Hydrogen Bonding ; Lactams ; Protein Conformation ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1982-01-08
    Description: A specific, acquired chromosomal abnormality (deletion 3p) has been found in at least one chromosome 3 in 100 percent of the metaphases in 12 of 12 cell lines cultured from human small-cell lung cancer tissue and in 2-day tumor culture specimens from three patients. Analysis of the shortest region of overlap shows the deletion to be 3p(14-23). This specific change was not seen in five of five lung cancer cell lines other than small-cell lung cancer or in two lymphoblastoid lines cultured from cells of small-cell lung cancer patients whose tumors had the 3p deletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whang-Peng, J -- Kao-Shan, C S -- Lee, E C -- Bunn, P A -- Carney, D N -- Gazdar, A F -- Minna, J D -- New York, N.Y. -- Science. 1982 Jan 8;215(4529):181-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6274023" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Small Cell/*genetics ; Cells, Cultured ; *Chromosome Deletion ; Chromosomes, Human, 1-3 ; Humans ; Karyotyping ; Lung Neoplasms/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1983-09-09
    Description: From morphological characterization and intracellular recordings, monolayer cultures derived from fetal mouse hypothalami were found to include functionally differentiated peptide neurons, a number of which appear to contain vasopressin. These cells exhibited particular patterns of slow, calcium-dependent membrane depolarizations, resembling in their periodicity and duration the phasic activity of vasopressin neurons recorded extracellularly in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theodosis, D T -- Legendre, P -- Vincent, J D -- Cooke, I -- New York, N.Y. -- Science. 1983 Sep 9;221(4615):1052-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6348947" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/*pharmacology ; Cells, Cultured ; *Electrophysiology ; Histocytochemistry ; Hypothalamus/analysis/*cytology ; Immunologic Techniques ; Mice ; Neurons/analysis ; Vasopressins/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-09
    Description: Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Elizabeth S -- Jiang, Rays H Y -- Moechtar, Mischka A -- Barteneva, Natasha S -- Weekes, Michael P -- Nobre, Luis V -- Gygi, Steven P -- Paulo, Joao A -- Frantzreb, Charles -- Tani, Yoshihiko -- Takahashi, Junko -- Watanabe, Seishi -- Goldberg, Jonathan -- Paul, Aditya S -- Brugnara, Carlo -- Root, David E -- Wiegand, Roger C -- Doench, John G -- Duraisingh, Manoj T -- 100140/Wellcome Trust/United Kingdom -- 1K08AI103034-01A1/AI/NIAID NIH HHS/ -- K01 DK098285/DK/NIDDK NIH HHS/ -- K01DK098285/DK/NIDDK NIH HHS/ -- K08 AI103034/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- R01AI091787/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):711-4. doi: 10.1126/science.aaa3526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ; Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. ; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. ; Japanese Red Cross Kinki Block Blood Center, Osaka, Japan. ; Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan. ; Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ; The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. mduraisi@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/genetics ; Antigens, CD55/*genetics ; Cell Differentiation/genetics ; Cells, Cultured ; Erythrocytes/cytology/metabolism/*parasitology ; Genetic Testing ; Hematopoietic Stem Cells/cytology ; Host-Parasite Interactions/*genetics ; Humans ; Malaria, Falciparum/*genetics/*parasitology ; Plasmodium falciparum/*pathogenicity ; RNA, Small Interfering/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-05
    Description: Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)-rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)-induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuijs, Martijn J -- Willart, Monique A -- Vergote, Karl -- Gras, Delphine -- Deswarte, Kim -- Ege, Markus J -- Madeira, Filipe Branco -- Beyaert, Rudi -- van Loo, Geert -- Bracher, Franz -- von Mutius, Erika -- Chanez, Pascal -- Lambrecht, Bart N -- Hammad, Hamida -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1106-10. doi: 10.1126/science.aac6623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. ; Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France. ; Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universitat, Munich, Germany. ; Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. ; Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University, Butenandtstrasse 5-13, D-81377 Munich, Germany. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands. hamida.hammad@ugent.be bart.lambrecht@ugent.be. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. hamida.hammad@ugent.be bart.lambrecht@ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/prevention & control ; Cells, Cultured ; Child ; DNA-Binding Proteins/*biosynthesis ; Dairying ; Dendritic Cells/immunology ; Dust/*immunology ; Female ; Humans ; Hygiene Hypothesis ; Hypersensitivity/enzymology/immunology/*prevention & control ; Inhalation Exposure ; Intracellular Signaling Peptides and Proteins/*biosynthesis ; Lipopolysaccharides/*immunology ; Lung/*enzymology/immunology ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*biosynthesis ; Pyroglyphidae/*immunology ; Respiratory Mucosa/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-26
    Description: Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-kappaB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Chanhee -- Xu, Qikai -- Martin, Timothy D -- Li, Mamie Z -- Demaria, Marco -- Aron, Liviu -- Lu, Tao -- Yankner, Bruce A -- Campisi, Judith -- Elledge, Stephen J -- AG009909/AG/NIA NIH HHS/ -- AG017242/AG/NIA NIH HHS/ -- AG046174/AG/NIA NIH HHS/ -- DP1 OD006849/OD/NIH HHS/ -- DP1OD006849/OD/NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Buck Institute for Research on Aging, Novato, CA 94945, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. selledge@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404840" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics/metabolism ; Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; Autophagy/*genetics ; Brain/metabolism ; Cell Aging/*genetics ; Cell Cycle/genetics ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; *DNA Damage ; Fibroblasts ; GATA4 Transcription Factor/genetics/*metabolism ; Gene Expression Profiling ; Humans ; Inflammation/*genetics ; Interleukin-1alpha/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/metabolism ; NF-kappa B/metabolism ; Phenotype ; Promoter Regions, Genetic ; Tumor Necrosis Factor Receptor-Associated Peptides and ; Proteins/genetics/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-24
    Description: Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. We found that in melanocytes, CPDs are generated for 〉3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These "dark CPDs" constitute the majority of CPDs and include the cytosine-containing CPDs that initiate UV-signature C--〉T mutations. Dark CPDs arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but induces CPDs by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically generated excited electronic states are relevant to mammalian biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premi, Sanjay -- Wallisch, Silvia -- Mano, Camila M -- Weiner, Adam B -- Bacchiocchi, Antonella -- Wakamatsu, Kazumasa -- Bechara, Etelvino J H -- Halaban, Ruth -- Douki, Thierry -- Brash, Douglas E -- 2 P50 CA121974/CA/NCI NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK34989/DK/NIDDK NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):842-7. doi: 10.1126/science.1256022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan. ; Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo 09972-270 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. ; INAC/LCIB UMR-E3 CEA-UJF/Commissariat a l'Energie Atomique (CEA), 38054 Grenoble Cedex 9, France. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. douglas.brash@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cytosine/metabolism ; DNA/chemistry/genetics/*radiation effects ; DNA Damage/*genetics ; Energy Transfer ; Humans ; Melanins/chemistry/*metabolism ; Melanocytes/metabolism/*radiation effects ; Melanoma/*genetics ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Mutation ; Neoplasms, Radiation-Induced/*genetics ; Photons ; Pyrimidine Dimers/*metabolism ; Receptor, Melanocortin, Type 1/genetics ; Skin Neoplasms/*genetics ; Sunlight/adverse effects ; Thymine/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1980-11-21
    Description: A hormonally defined medium was used to isolate a homogeneous epithelioid cell population from canine kidney. Monolayers of these cells form domes, an indication of active ion transport, and this process is inhibited by ouabain. This technique allows the isolation of primary cultures of renal epithelial cells, free of fibroblasts, for the characterization of biochemical and physiological properties related to renal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jefferson, D M -- Cobb, M H -- Gennaro, J F Jr -- Scott, W N -- New York, N.Y. -- Science. 1980 Nov 21;210(4472):912-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7434005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport, Active ; Cell Adhesion ; Cells, Cultured ; Culture Media ; Dogs ; Epithelium/metabolism ; Female ; Kidney/*cytology ; Male ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...