ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (63)
  • BioMed Central  (1)
  • 2015-2019  (4)
  • 1980-1984  (28)
  • 1975-1979  (28)
  • 1960-1964  (2)
  • 1860-1869  (2)
  • 1
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Abstract The southern Namib desert has a vegetation cover of mainly succulent plants in which species of the Mesembryanthemaceae are predominant. Climatically this area is characterized by hot and dry days, and cool and humid nights with episodic rainfalls only in winter. In this environment a great number of species perform a crassulaceaen acid metabolism (CAM). The responses of these plants to water stress as well as the regulation of CAM in the natural habitat are described and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relation between daily maximal rates of net photosynthesis and plant water status was studied during a dry season on irrigated and non-irrigated, naturally growing, perennial wild plants. Species were examined which differ in phenology, leaf anatomy and morphology: Hammada scoparia, Artemisia herba-alba, Zygophyllum dumosum, and Reaumuria negevensis. Prumus armeniaca which was growing in the run-off farm at Avdat and which has mosomorphic leaves was included in the comparison. All plants differed in their seasonal change in plant water status, and in their seasonal change in daily maximal net photosynthesis. Rates of CO2 uptake were not uniquely related to simultanously measured leaf water potentials. Daily maximal rates of net photosynthesis of non-irrigated plants, and the difference between maximal CO2 uptake of irrigated and non-irrigated plants were examined in relation to pre-dawn water potential. Maximal net photosynthesis rates decreased very rapidly with decrease in pre-dawn water potential or, for Hammada scoparia, they decreased even with a constant level of pre-dawn water potential. Consequently, it was considered necessary to include both time and water potential in a parameter “bar day” describing the accumulated drought stress of the plants. All species showed the same relation between relative maximal net photosynthesis and drought experience as determined by cumulative daily addition of pre-dawn water potentials for the non-irrigated plants since the last rain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The seasonal change in diurnal patterns of net photosynthesis and daily carbon gain is studied in relation to the plant water status of the irrigated and non-irrigated naturally growing desert species Hammada scoparia, Zygophyllum dumosum, Artemisia herba-alba and Reaumuria negevensis. Comparison is made to cultivated Prunus armeniaca. Under non-irrigated natural conditions Hammada scoparia, a C4 plant, showed one-peaked flat diurnal courses of CO2 uptake which changed into a pattern of a high morning peak of CO2 uptake or slightly two-speaked curves in the late dry season. In contrast, the C3 species Zygophyllum dumosum, Artemisia herba-alba and Prunus armeniaca changed from one-peaked to distinct two-peaked patterns. At the end of the dry season, non-irrigated plants showed respiration only. Reaumuria negevensis had one-peaked curves with a low level of CO2 uptake. There is no general relation between day-time CO2 gain and pre-dawn water potential for the investigated species. In order to characterize the effect of soil drought, the CO2 gain during day-time of non-irrigated plants is expressed as a percentage of the CO2 gain of the irrigated counterparts. After an initial period of minimal drought effect, the relative day-time CO2 gain decreases almost linearly with cumulative water stress as determined by the daily addition of pre-dawn water potentials for the non-irrigated plants since the last rainfall. The slope of decrease differs from species to species. The relation of daily CO2 gain to maximal net photosynthesis is discussed. Initially, at a good plant water status, the daily CO2 gain does not decrease in proportion to the maximal photosynthetic rates as a result of stomatal control at high photosynthetic activity. At increasing water stress the daily CO2 gain decreases more than proportionally to the decrease of the maximal rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A portable porometer is described for measuring the steady-state CO2 and H2O exchange rates of leaves under natural conditions. The porometer has an open gas exchange system which monitors the differences in concentrations of CO2 and H2O entering and leaving a cuvette which is clamped on or around leaves. The cuvette is designed to maintain ambient air temperature and humidity around the leaf. This instrument may also be used to determine CO2 response curves in the field. Examples of diurnal courses are presented for attached leaves of different species having high and low rates of CO2 exchange.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf gas exchange of Vigna unguiculata was influenced by short-term (day-to-day) changes in soil temperature and the response depended upon the aerial environment. When aerial conditions were constant at 30° C leaf temperature, high air humidity and moderate quantum flux, CO2 assimilation rate and leaf conductance increased with increases in soil temperature from 20 to 35° C, and this response was reversible. Decreases in CO2 assimilation rate and leaf conductance were observed at root temperatures above 30° C when root temperatures were increased from 20° C to 40° C and when air humidity was decreased in steps during the day. In contrast, varying soil temperatures between 20 to 35° C had no influence on gas exchange when shoots were subjected to a wide range of temperatures during each day. The gain ratio ∂A/τE remained constant at different air humidities when root temperature was less than or equal to 30° C indicating optimal gas exchange regulation, but changed with humidity at higher root temperatures. Leaf conductance responded independently from leaf water potential which remained relatively constant during individual experiments. The results indicate that plant responses to high root temperatures may have relevance to plant performance in semi-arid environments. They also illustrate the importance of controlling soil temperatures when studying the responses of potted plants in controlled aerial environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Welwitschia mirabilis is a perennial desert plant with extremely large leaves (0.5–1.0 m broad, 1–2 m long). Leaf temperatures were measured in the field and the energy budget was calculated. The portions of the leaf which were kept above the ground had leaf temperatures which were only 4–6°C above air temperature. In the leaf portions which were in contact with the ground leaf temperatures were 6–12°C above air temperature (absolute maximum 51°C). The important feature in the energy budget ofWelwitschia mirabilis is its high reflectivity (38% of the global radiation). Only about 56% of the global radiation is absorbed by the thick leathery leaves. The energy loss due to convection is of the same order of magnitude as the reflection and it is abouy the same in the portions of leaf on and above the ground. The difference in leaf temperatures found in these portions is due to the loss of thermal radiation from the section of leaf above the ground to the cooler ground which is shaded by the leaf. The provision of a heat sink due to the large area of shade cast by these large leaves is of significance to the existence ofWelwitschia mirabilis in its arid habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Increases in plant biomass are mainly a balance between growth of new leaves and growth of new roots, the new leaves having positive feedback upon the production process and the new roots having positive feedback upon the plant water status. Control of both opposing processes with respect to biomass production may be considered optimal whenever biomass of the plant reaches a maximum without adversely affecting plant water status. This occurs only if all carbohydrates are partitioned into growth of new leaves, unless water uptake is insufficient to meet the additional evaporative demand created by the newly grown leaf area without decreasing the water status of the plant. It is shown by theoretical considerations based upon optimization theory, especially by application of the Pontryagin Maximum Principle, that in this case carbohydrate partitioning is dependent upon the transpiration rate per leaf weight and upon the efficiency of the root at taking up water. Growth of Vigna unguiculata at two levels of air humidity and two levels of water uptake rate by the root was consistent with such a carbohydrate partitioning pattern. Growth of total biomass and its components (leaves, stems, and roots), whole plant transpiration, and the pattern of carbon partitioning were predicted and explained by applying the foregoing principles of optimization in a heuristic model for vegetative growth of an annual.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tradescantia virginiana L. plants were cultivated under contrasting conditions of temperature, humidity, light quality and intensity, and nutrient status in order to investigate the effect of growth conditions on the water relations parameters of the leaf epidermal cells. Turgor pressure (P), volumetric elastic modulus (ɛ), half-time of water potential equilibration (T 1/2), hydraulic conductivity (L p ) were measured with the miniaturized pressure probe in single cells of the upper and lower epidermis of leaves. Turgor differed (range: 0.1 bar to 7.2 bar) between treatments with lowest values under warm and humid conditions and additional supply of fertilizer, and highest values under conditions of low air humidity and low nutrient supply. The volumetric elastic modulus changed by 2 orders of magnitude (range: 3.0 bar to 350 bar, 158 cells), but ɛ was only affected by the treatments, in as much as it was dependent on turgor. The turgor dependence of ɛ, measured on intact leaves of T. virginiana, was similar to that for cells of the isolated (peeled) lower epidermis, where ɛ as a function of turgor was linear over the whole range of turgors. This result has implications for the discussion of pressure/volume curves as measured by the pressure bomb where changes in “bulk leaf ɛ” are frequently discussed as “adaptations” to certain treatments. The measurements of the hydraulic conductivity indicate that this parameter varies between treatments (range of means: 2.4×10-6 cm s-1 bar-1 to 13.4×10-6 cm s-1 bar-1). There was a negative correlation for L p in cells of intact leaves as a function of turgor which was altered by the growing conditions. However, a correlation with turgor could not be found for cells from isolated epidermis or cells from a uniform population of plants. The large variation in L p from cell to cell observed in the present and in previous studies was accounted for in a study of 100 cells from a uniform population of plants by the propagation of measurement errors in calculating L p . The results suggest that in T. virginiana cellular water relations are changed mainly by the turgor dependence of ɛ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a previous paper seasonal shifts of the temperature optimum (OP) and of the upper temperature compensation point (CP) of net photosynthesis were described for Hammada scoparia growing wild, and for Prunus armeniaca cultivated in the Negev Desert (Israel). In this paper the relationships between these shifts and the microclimatic conditions, plant-water relations, and plant development are studied. The energy budged of the thin, round photosynthesizing stems of H. scoparia growing in an open desert habitat differes from that of the broad leaves of P. armeniaca within the orchard. This explains the fact that daily maximum temperatures of the apricot increased until August and September, whereas maximum temperatures of H. scoparia reached a peak in May and June and decreased thereafter during the second half of the growing season. For H. scoparia a correspondence was found between the daily maximum tissue temperatures (and also the average temperatures of the warmest periods of the day) and the seasonal changes of the OP and CP values. This may indicate that the shifts in the temperature sensitivity of net photosynthesis of this plant are adaptations to the temperature conditions of the plant. This, however, cannot be the case for P. armeniaca, where during the second part of the growing season a period of rising leaf temperatures coincides with a period of decreasing OP and CP values. Therefore, the seasonal changes of the temperature dependence of net photosynthesis of P. armeniaca could not always be considered an adaptation to the prevailing temperature conditions of the plant. In this case, the changes in temperature sensitivity of photosynthesis could be due to developmental processes such as aging. In both lants the seasonal changes of the OP and CP values correspond to changes of the daily photoperiod and to changes of the daily average light intensity. It appears possible that this correlation indicates a causal relationship.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The gas exchange of the apricot (Prunus armeniaca L.) growing in the runoff farm at Avdat (Negev, Israel) was measured during its growing period using temperature- and humidity-controlled chambers. Water potentials of the xylem were measured with a pressure bomb, and the mesophyll internal CO2 concentration was calculated from simultaneous measurements of net photosynthesis and transpiration. The daily changes in water potential Ψ had only little effect on the daily course of stomatal resistance. The early morning peak of CO2 uptake was reached when Ψ had already dropped to very low values. On dry days, Ψ and the relative water content of the leaf were improved at noon during the time of stomatal closure. On humid days, Ψ dropped to very low values (43.5 bar) at a high transpiration rate without causing stomatal closure, as much as on the dry days when stomata where more closed at less water stress. The observed changing sensitivity of the stomata to changes in air humidity during the season is related to the water status in the plant. This change is possibly caused by a long-term effect of stress in this habitat. The daily changes in stomatal diffusion resistance did not consistently correlate with changes of the CO2 concentration in the intercellular air spaces. In the morning a decreasing internal CO2 concentration was even inversely correlated to the stomatal response. In the afternoon the effect of an increasing internal CO2 concentration and the effect of external climate on stomatal response could be additive. However, at the time, when CO2 uptake reached a second peak in the afternoon the same value of diffusion resistance is reached at very different levels of internal CO2 concentration as compared to the morning. For the regulation of the diffusion resistance in apricot under the natural conditions, the effects of plant internal control mechanisms are overruled and/or modified by the external climatic factors of air humidity and temperature. The significance of the climate-controlled stomatal response for the existence and cultivation of this plant species in an arid habitat is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...