ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • Copernicus Publications (EGU)  (10)
  • Springer  (6)
  • Heinrich Böll Stiftung  (2)
  • American Physical Society (APS)
  • IFM-GEOMAR
  • Nature Publishing Group
  • Springer Nature
  • 2015-2019  (18)
  • 1985-1989  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-02-01
    Description: Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO(2) in the estuaries ranged between 640 and 5065 mu atm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m(-2) yr(-1), which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m(-2) yr(-1)) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 +/- 0.2 TgC yr(-1) to the South China Sea as organic carbon and their mid-estuaries release approximately 0.4 +/- 0.2 TgC yr(-1) into the atmosphere as CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Estuaries are sources of nitrous oxide (N2O) and methane (CH4) to the atmosphere. However, our present knowledge of N2O and CH4 emissions from estuaries in the tropics is very limited because data are scarce. In this study, we present first measurements of dissolved N2O and CH4 from two estuaries in a peat-dominated region of northwestern Borneo. Two campaigns (during the dry season in June 2013 and during the wet season in March 2014) were conducted in the estuaries of the Lupar and Saribas rivers. Median N2O concentrations ranged between 7.2 and 12.3 nmol L−1 and were higher in the marine end-member (13.0 ± 7.0 nmol L−1). CH4 concentrations were low in the coastal ocean (3.6 ± 0.2 nmol L−1) and higher in the estuaries (medians between 10.6 and 64.0 nmol L−1). The respiration of abundant organic matter and presumably anthropogenic input caused slight eutrophication, which did not lead to hypoxia or enhanced N2O concentrations, however. Generally, N2O concentrations were not related to dissolved inorganic nitrogen concentrations. Thus, the use of an emission factor for the calculation of N2O emissions from the inorganic nitrogen load leads to an overestimation of the flux from the Lupar and Saribas estuaries. N2O was negatively correlated with salinity during the dry season, which suggests a riverine source. In contrast, N2O concentrations during the wet season were not correlated with salinity but locally enhanced within the estuaries, implying that there were additional estuarine sources during the wet (i.e., monsoon) season. Estuarine CH4 distributions were not driven by freshwater input but rather by tidal variations. Both N2O and CH4 concentrations were more variable during the wet season. We infer that the wet season dominates the variability of the N2O and CH4 concentrations and subsequent emissions from tropical estuaries. Thus, we speculate that any changes in the Southeast Asian monsoon system will lead to changes in the N2O and CH4 emissions from these systems. We also suggest that the ongoing cultivation of peat soil in Borneo is likely to increase N2O emissions from these estuaries, while the effect on CH4 remains uncertain.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Berlin, Springer, vol. 7, no. 1, pp. 443-487, (ISBN 0-89871-560-1)
    Publication Date: 1989
    Keywords: Geodesy ; Muller
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989
    Keywords: Proceedings of a conference ; Geodesy ; Plate tectonics ; Muller
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Ohne das Meer gäbe es kein Leben auf unserem Planeten. Es regelt weitgehend das Klima, gibt uns Nahrung und liefert Energie. Darüber hinaus ist es ein wichtiger Verkehrsweg, ein Erholungsraum und ein Quell ästhetischen Vergnügens. Aber das Meer steht unter Stress, denn das alte Prinzip von der „Freiheit der Meere“ hat zu Überfischung, Artenverlust und einer immensen Verschmutzung der Ozeane geführt. Deshalb muss der Umgang mit dem Meer auf nachhaltige und gerechte Grundlagen gestellt werden. Der Meeresatlas 2017 liefert dazu die Daten, Fakten und Zusammenhänge. Er zeigt in zahlreichen Beiträgen und über 50 Grafiken, in welch schlechtem Zustand sich die Weltmeere befinden, warum das so ist und was man tun muss, um die Situation der Ozeane zu verbessern.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2–5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2–5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-04
    Description: Numerous studies have been conducted on the effect of ocean acidification on calcifiers inhabiting nearshore benthic habitats, such as the blue mussel Mytilus edulis. The majority of these experiments was performed under stable CO2 partial pressure (pCO2), carbonate chemistry and oxygen (O2) levels, reflecting present or expected future open ocean conditions. Consequently, levels and variations occurring in coastal habitats, due to biotic and abiotic processes, were mostly neglected, even though these variations largely override global long-term trends. To highlight this hiatus and guide future research, state-of-the-art technologies were deployed to obtain high-resolution time series of pCO2 and [O2] on a mussel patch within a Zostera marina seagrass bed, in Kiel Bay (western Baltic Sea) in August and September 2013. Combining the in situ data with results of discrete sample measurements, a full seawater carbonate chemistry was derived using statistical models. An average pCO2 more than 50 % (~ 640 µatm) higher than current atmospheric levels was found right above the mussel patch. Diel amplitudes of pCO2 were large: 765 ± 310 (mean ± SD). Corrosive conditions for calcium carbonates (Ωarag and Ωcalc 〈 1) centered on sunrise were found, but the investigated habitat never experienced hypoxia throughout the study period. It is estimated that mussels experience conditions limiting calcification for 12–15 h per day, based on a regional calcium carbonate concentration physiological threshold. Our findings call for more extensive experiments on the impact of fluctuating corrosive conditions on mussels. We also stress the complexity of the interpretation of carbonate chemistry time series data in such dynamic coastal environments.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-03
    Description: Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world’s deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-19
    Description: A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2–4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...