ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: The technological development of solar electric propulsion has advanced significantly over the last few years. Mission planners are now seriously studying which missions would benefit most from solar electric propulsion (SEP) and NASA's Solar System Exploration Division is contributing funding to ground and space qualification tests. In response to the impending release of NASA's Announcement of Opportunity for Discovery class planetary missions, we have undertaken a pre-Phase A study of a SEP mission to the Moon. This mission will not only return a wealth of new scientific data but will open up a whole new era of planetary exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: Upon its approach to orbit the dwarf planet Ceres in early 2015, optical navigation and dedicated satellite search images were acquired with the Dawn mission's framing camera 2. A team of searchers individually processed and examined the images for evidence of objects moving with Ceres. Completeness of search with respect to the space searched was calculated as a function of distance to Ceres and found to be complete down to 15 Ceres radii (Ceres' mean radius is 470 kilometers). Upper limits of detectable magnitude were determined for each observed set of images and an upper limit in size was calculated assuming for the putative objects, Ceres' geometric albedo of 0.11. Nothing was found associated with Ceres down to a radius of 12 meters for the most sensitive search, and down to a radius of 323m for the least sensitive search circumstances. Examination of the physical properties of the 41 largest and most massive main belt asteroids suggests that large asteroids without satellites are intact and their interiors have internal strength. This is consistent with results from the Dawn mission at both Vesta and Ceres. Ceres' volatile-rich composition also is a likely contributor to both the absence of satellites at Ceres and of Ceres meteorites at Earth. These results suggest that collisional disruption creating rubble pile structure is a necessary condition for formation of satellites around main belt asteroids.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68836 , Icarus (ISSN 0019-1035) (e-ISSN 1090-2643); 316; 191-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Quadrangle Av-10 'Oppia' is one of five quadrangles that cover the equatorial region of asteroid (4) Vesta. This quadrangle is notable for the broad, spectrally distinct ejecta that extend south of the Oppia crater. These ejecta exhibit the steepest ('reddest') visible spectral slope observed across the asteroid and have distinct color properties as seen in multispectral composite images. Compared to previous works that focused on the composition and nature of unusual ('orange') ejecta found on Vesta, here we take into account a broader area that includes several features of interest, with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR). Our analysis shows that the older northern and northeastern part of Av-10 is dominated by howardite-like material, while the younger southwestern part, including Oppia and its ejecta blanket, has a markedly eucritic mineralogy. The association of the mineralogical information with the geologic and topographic contexts allows for the establishment of relationships between the age of the main formations observed in this quadrangle and their composition. A major point of interest in the Oppia quadrangle is the spectral signature of hydrous material seen at the local scale. This material can be mapped by using high-resolution VIR data, combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Hydrated mineral phases studied previously on Vesta generally correlate with low-albedo material delivered by carbonaceous asteroids. However, our analysis shows that the strongest OH signature in Av-10 is found in a unit west of Oppia, previously mapped as 'light mantle material' and showing moderate reflectance and a red visible slope. With the available data we cannot yet assess the presence of water in this material. However, we offer a possible explanation for its origin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN27430 , Icarus; 259; 129–149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: On November 19, 1969, Apollo 12 astronauts installed a Lunar Surface Magnetometer (LSM) as a part ofthe Apollo Lunar Surface Experiment Package, making the first magnetic field measurement on aplanetary body other than Earth. The subsequent Apollo missions deployed two more LSM's (Apollos 15and 16), two Lunar Portable Magnetometers (Apollos 14 and 15), and two Sub-satellite BiaxialMagnetometers (SBMs of Apollos 15 and 16). After almost a half century, the Apollo 15 and 16 missionsare still the only lunar missions conducting simultaneous surface and orbital magnetic field experiments.The Apollo magnetic field experiments enabled many first discoveries, including the lunar magneticanomalies and the electrical conductivity of the Moon. Since the Apollo era, the archaic data format hasbeen hampering the re-examination of Apollo magnetic field records until recently. We have nowrestored most of the digital Apollo magnetic field records archived at NSSDC, including the 0.3-s datafrom the Apollo 12, 15 and 16 LSMs and the 24-s data from Apollo 15 and 16 SBMs. The restored LSMdata have revealed many narrowband ion cyclotron waves in the Earth's magnetotail that were not
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN59814 , American Geophysical Union (2018) Fall Meeting 2018; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN37183 , Icarus (e-ISSN 1090-2643); 259; 150-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Introduction: In December 2015 the Dawn spacecraft moved into the Low Altitude Mapping Orbit (LAMO) around Ceres, encircling the dwarf planet at a distance of 400 km to the surface below. At this altitude, images of the on-board framing camera have a resolution of 36 meters per pixel, high enough to distinguish large boulders on the surface. Indeed, LAMO images show a multitude of boulders around what seem to be fresh craters. The average life-time of boulders on Dawn's previous target, Vesta, was estimated to be similar to that of Lunar boulders, as may be expected from the basaltic surface composition. The bulk composition of Ceres may be carbonaceous chondrite-like with significant contributions of clays, salt, and water ice. As such, the abundance and distribution of boulders on Ceres may be different from that on Vesta. We mapped, counted, and measured the diameter of boulders over the entire surface of Ceres. Our analysis of the data in combination with crater age estimates may provide clues to the physical nature and composition of the surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN38242 , Asteroids, Comets, Meteors (ACM) 2017; Apr 10, 2017 - Apr 14, 2017; Montevideo, UY; Uruguay
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...