ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-25
    Description: Author(s): Yi Liu, Pengji Ding, Guillaume Lambert, Aurélien Houard, Vladimir Tikhonchuk, and André Mysyrowicz We propose a new mechanism to explain the origin of optical gain in the transitions between the excited and ground states of the ionized nitrogen molecule following irradiation of neutral nitrogen molecules with an intense ultrashort laser pulse. An efficient transfer of population to the excited st… [Phys. Rev. Lett. 115, 133203] Published Thu Sep 24, 2015
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-18
    Description: Author(s): Mauro Cirio, Simone De Liberato, Neill Lambert, and Franco Nori Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong cou… [Phys. Rev. Lett. 116, 113601] Published Thu Mar 17, 2016
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-01
    Description: Author(s): Mauro Cirio, Kamanasish Debnath, Neill Lambert, and Franco Nori Here we describe how, utilizing a time-dependent optomechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultrastrongly coupled light-matter system. We calculate the thermal noise tolerated by this measurement ... [Phys. Rev. Lett. 119, 053601] Published Mon Jul 31, 2017
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Most recent assessments of long-term changes in the vertical distribution of ozone (by e.g. WMO and SI2N) rely on data sets that integrate observations by multiple instruments. Several merged satellite ozone profile records have been developed over the past few years; each considers a particular set of instruments and adopts a particular merging strategy. Their intercomparison by Tummon et al. revealed that the current merging schemes are not sufficiently refined to correct for all major differences between the limb/occultation records. This shortcoming introduces uncertainties that need to be known to obtain a sound interpretation of the different satellite-based trend studies. In practice however, producing realistic uncertainty estimates is an intricate task which depends on a sufficiently detailed understanding of the characteristics of each contributing data record and on the subsequent interplay and propagation of these through the merging scheme. Our presentation discusses these challenges in the context of limb/occultation ozone profile records, but they are equally relevant for other instruments and atmospheric measurements. We start by showing how the NDACC and GAW-affiliated ground-based networks of ozonesonde and lidar instruments allowed us to characterize fourteen limb/occultation ozone profile records, together providing a global view over the last three decades. Our prime focus will be on techniques to estimate long-term drift since our results suggest this is the main driver of the major trend differences between the merged data sets. The single-instrument drift estimates are then used for a tentative estimate of the systematic uncertainty in the profile trends from merged data records. We conclude by reflecting on possible further steps needed to improve the merging algorithms and to obtain a better characterization of the uncertainties involved.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN30387 , AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The representation of upper tropospheric/lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern Era Retrospective Analysis for Research and Applications), ERA-I (the ECMWF interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution: For example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterization. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude southern hemisphere winter upper tropospheric jets and multiple tropopauses, and in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry climate models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46367 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 17; 18; 11,541-11,566
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Last Glacial Maximum (LGM, 21,000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49083 , Geoscientific Model Development (ISSN 1991-9603); 10; 11; 4035-4055
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-05
    Description: The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for about 12% of the globally averaged inorganic chlorine and bromine in the stratosphere, compared to 14% for CFC-12 in 2012. In spite of the MP controls, there are large ongoing emissions of CCl4 into the atmosphere. Estimates of emissions from various techniques ought to yield similar numbers. However, the recent WMO/UNEP Scientific Assessment of Ozone Depletion estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg/year (1-4 kilotonnes/year), based on country-by-country reports to UNEP, and a global top-down emissions estimate of 57 Gg/ year, based on atmospheric measurements. This 54 Gg/year difference has not been explained. In order to assess the current knowledge on global CCl4 sources and sinks, stakeholders from industrial, governmental, and the scientific communities came together at the Solving the Mystery of Carbon Tetrachloride workshop, which was held from 4-6 October 2015 at Empa in Dbendorf, Switzerland. During this workshop, several new findings were brought forward by the participants on CCl4 emissions and related science.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN34664
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson-Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN55725 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 18; 7; 4935-4964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...