ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Al3+  (1)
  • Biocontrol of snails  (1)
  • Springer  (2)
  • 2015-2019
  • 1990-1994  (2)
  • 1965-1969
  • 1920-1924
  • 1905-1909
Collection
Publisher
  • Springer  (2)
Years
  • 2015-2019
  • 1990-1994  (2)
  • 1965-1969
  • 1920-1924
  • 1905-1909
Year
  • 1
    ISSN: 1476-5535
    Keywords: MolluscicidalBacillus toxin ; Bacillus brevis ; Biomphalaria glabrata ; Biocontrol of snails ; Antioxidant preservation of toxin ; Secondary fermentation factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Strain SS86-4 was one of 40Bacillus brevis strains shown to be molluscicidal to the schistosomiasis snail vectorBiomphalaria glabrata. When grown in mB4 medium in 2-L fermentors, SS86-4 was molluscicidal only if fructose or phenylalanine was present in the medium. This is reminiscent of secondary fermentation factor effects, in this case an antioxidant effect. In vivo proteases also were capable of reducing molluscicidal activity. The molluscicidal toxin has an LC50 of 1 μg toxin protein ml−1 (approx. 1 p.p.m.) and may be described as a small proteinaceous, heat-stable, oxygen-sensitive entity associated with the particulate portion of the cell wall fraction ofB. brevis that is formed prior to sporulation. Initial information indicates that its HPLC signature shows major peaks at 148.37 and 163.96 s and consists of two bands of approximately 5.3 kDa and 8.7 kDa on PAGE gel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 134 (1991), S. 167-178 
    ISSN: 1573-5036
    Keywords: Al3+ ; aluminium ; hydroxy-aluminium ; phytotoxicity ; polynuclear aluminium ; rhizotoxicity ; roots ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aluminium (III) released from soil minerals to the soil solution under acid conditions may appear as hexaaquaaluminium (Al(H2O)6 3+, or Al3+ for convenience) or may react with available ligands to form additional chemical species. That one or more of these species is rhizotoxic (inhibitory to root elongation) has been known for many decades, but the identity of the toxic species remains problematical for the following reasons. 1. Several Al species coexist in solution so individual species cannot be investigated in isolation, even in artificial culture media. 2. The activities of individual species must be calculated from equilibrium data that may be uncertain. 3. The unexpected or undetected appearance of the extremely toxic triskaidekaaluminium (AlO4Al12(OH)24(H2O)12 7+ or Al13) may cause misatribution of toxicity to other species, especially to mononuclear hydroxy-Al. 4. If H+ ameliorates Al3+ toxicity, or vice versa, then mononuclear hydroxy-Al may appear to be toxic when it is not. 5. The identity and activities of the Al species contacting the cell surfaces are uncertain because of the H+ currents through the root surface and because of surface charges. This article considers the implications of these problems for good experimental designs and critically evaluates current information regarding the relative toxicities of selected Al species. It is concluded that polycationic Al (charge 〉2) is rhizotoxic as are other polyvalent cations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...