ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (11)
  • 2000-2004  (2)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2024-03-15
    Description: Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.
    Keywords: Abbreviation; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Chlorophyll a; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_OA; Entire community; EXP; Experiment; Experiment day; Fragilariopsis curta; Fragilariopsis cylindrus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Maximum photochemical quantum yield of photosystem II; Nitrate and Nitrite; Number of cells; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, reactive soluble; Polar; Primary production/Photosynthesis; Proboscia truncata; Proton concentration; Pseudonitzschia turgiduloides; Registration number of species; Replicate; Salinity; Silicate; Silicification; Species; Stellarima microtrias; Temperature, water; Thalassiosira antarctica; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 104844 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Westwood, Karen; Thomson, Paul G; van den Enden, Rick; Maher, L E; Wright, S; Davidson, Andrew T (2018): Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer. Journal of Experimental Marine Biology and Ecology, 498, 46-60, https://doi.org/10.1016/j.jembe.2017.11.003
    Publication Date: 2024-03-15
    Description: Polar waters may be highly impacted by ocean acidification (OA) due to increased solubility of CO2 at colder water temperatures. Three experiments examining the influence of OA on primary and bacterial production were conducted during austral summer at Davis Station, East Antarctica (68°35′ S, 77°58′ E). For each experiment, six minicosm tanks (650 L) were filled with 200 μm filtered coastal seawater containing natural communities of Antarctic marine microbes. Assemblages were incubated for 10 to 12 days at CO2 concentrations ranging from pre-industrial to post-2300. Primary and bacterial production rates were determined using NaH14CO3 and 14C-leucine, respectively. Net community production (NCP) was also determined using dissolved oxygen. In all experiments, maximum photosynthetic rates (Pmax, mg C mg/chl a/h) decreased with elevated CO2, clearly reducing rates of total gross primary production (mg C/L/h). Rates of cell-specific bacterial productivity (μg C/cell/h) also decreased under elevated CO2, yet total bacterial production (μg C/L/h) and cell abundances increased with CO2 over Days 0–4. Initial increases in bacterial production and abundance were associated with fewer heterotrophic nanoflagellates and therefore less grazing pressure. The main changes in primary and bacterial productivity generally occurred at CO2 concentrations 〉 2 × present day (〉 780 ppm), with the same responses occurring regardless of seasonally changing environmental conditions and microbial assemblages. However, NCP varied both within and among experiments, largely due to changing nitrate + nitrite (NOx) availability. At NOx concentrations 〈 1.5 μM photosynthesis to respiration ratios showed that populations switched from net autotrophy to heterotrophy and CO2 responses were suppressed. Overall, OA may reduce production in Antarctic coastal waters, thereby reducing food availability to higher trophic levels and reducing draw-down of atmospheric CO2, thus forming a positive feedback to climate change. NOX limitation may suppress this OA response but cause a similar decline.
    Keywords: Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Bacteria; Bacterial production of carbon; Bacterial production of carbon per cell; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Coast and continental shelf; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_OA; Entire community; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross primary production of carbon; Gross primary production of oxygen; Laboratory experiment; Maximum photosynthetic efficiency per chlorophyll a biomass; Nanoflagellates, heterotrophic; Net community production of oxygen; Nitrate and Nitrite; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Photosynthetic efficiency, carbon production; Polar; Primary production/Photosynthesis; Ratio; Respiration; Respiration rate, oxygen; Salinity; Saturation light intensity; Silicate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 5854 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Antarctic; Aragonite saturation state; Bacteria, abundance; Bacteria, production as carbon; Bacterial production, standard error; Bacterial production of carbon; Bacterial production of carbon per cell; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Chlorophyll a; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Day of experiment; Effective quantum yield; Electron transport rate, relative; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Irradiance; Laboratory experiment; Light saturation; Maximum light utilization coefficient in carbon per chlorophyll a; Maximum photochemical quantum yield of photosystem II; Maximum photosynthetic efficiency per chlorophyll a biomass; Net photosynthesis rate, oxygen; Nitrate and Nitrite; Nitrogen, organic, particulate; Non photochemical quenching; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, reactive soluble; Photoinhibition in carbon per chlorophyll a; Polar; Primary production/Photosynthesis; Primary production of carbon; Prydz_Bay_OA; Replicate; Respiration rate, oxygen; Salinity; Silicate, reactive; Specific primary production of carbon per Chlorophyll a; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 33887 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Concentrations of plankton, suspended particles 0.74–87 μm equivalent spherical diameter and dissolved organic carbon (DOC) were measured from May to February at an Antarctic coastal site. Bacteria-sized particles 0.74–1 μm diameter, and bacterial cells and heterotrophic protists all exhibited a seasonal minimum during winter and maxima in summer. Bacteria composed 〈10% of the bacteria-sized particles. Release of autotrophic protists from the ice caused water column biomass of autotrophs to reach maximum concentrations in October and November, but maximum cell concentration in the water column was reached in January. Microheterotroph biomass weakly reflected the release of the ice algal community but reached maximum concentration during the water column bloom in January. Total DOC concentrations varied from 0.36 mg C l−1 in July to 3.10 mg C l−1 in October, with a yearly average of 1.51 mg C l−1. Ultrafiltration of DOC revealed that the molecular weight composition of the DOC differed greatly through the year. DOC 〈5 kDa molecular weight reached a maximum of 1.25 mg C l−1 in October and accounted for up to 60% of total DOC in July. Concentrations of high molecular weight DOC (〉100 kDa) were highest in July and November, with the DOC (100 kDa–0.5 μm) fraction reaching a maximum of 1.22 mg C l−1 in November and composing 82% of the total DOC in January. Wet chemical oxidation and high-temperature catalytic oxidation organic carbon analyses were compared. Good correlation was observed between methods during summer but no significant correlation existed in winter, indicating that winter DOC may be refractory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-11
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-08-23
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-11
    Print ISSN: 0722-4060
    Electronic ISSN: 1432-2056
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-29
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-27
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-20
    Description: Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms (〉 20 µm) increased in abundance with low to moderate fCO2 (343–634 µatm) but decreased at fCO2 ≥ 953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms (≤ 20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...