ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (7)
  • Mechanical Engineering  (7)
  • 2015-2019  (10)
  • 2000-2004  (4)
  • 1
    Publication Date: 2016-06-07
    Description: Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.
    Keywords: Mechanical Engineering
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Objective to develop an unshrouded impeller design, which a meets the performance requirements of a 3-stage fuel pump with a 2-stage pump design, has been accomplished. Performance of the baseline unshrouded impeller has been experimentally verified. Unshrouded impeller trade study and final 6+6 unshrouded impeller configuration has been presented. Structurally viable, 6+6-impeller design concept has been produced. Based on results presented in this study, at a nominal 10% tip-clearance, the 6+6 impeller design would increase payload to orbit by almost 625 lbs. per engine. The RLV vehicle requires 7 engines, therefore, application of high head unshrouded technology would increase payload capability by as much as 4,375 lbs. per vehicle.
    Keywords: Mechanical Engineering
    Type: AIAA Paper 2000-3243 , Joint Propulsion; Jul 16, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.
    Keywords: Mechanical Engineering
    Type: AIAA Paper 2000-3243 , Joint Propulsion; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: To address the challenges, which are involved with the development of flow control valves that can meet the requirements of deep oil wells such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration [1]. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the oil and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in the strict annular space limit of a typical downhole region of an oil well. The paper will present the design configuration, analysis and preliminary test results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-16-0783 , SPIE Smart Structures/NDE 2016; Mar 20, 2016 - Mar 24, 2016; Las Vegas, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The Heatshield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD (Space Technology Mission Directorate) and SMD (Science Mission Directorate) co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI (Principal Investigator) managed mission cost (PIMMC) for investigations utilizing the Heatshield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN32543 , New Frontiers Technology Workshop; Jun 01, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 36th AIAA Thermophysics Conference; Jun 23, 2003 - Jun 26, 2003; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24538 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The proposed paper will compare a fluid/thermal simulation, in FLUENT, with a low-g, nitrogen slosh experiment. The French Space Agency, CNES, performed cryogenic nitrogen experiments in several zero gravity aircraft campaigns. The computational results have been compared with high-speed photographic data, pressure data, and temperature data from sensors on the axis of the cylindrically shaped tank. The comparison between these experimental and computational results is generally favorable: the initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN25280 , AIAA Joint Propulsion Conference 2015; Jul 27, 2015 - Jul 29, 2015; Orlando/FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Pathway Student Showcase - Environmental Control and Life Support System for Orion Ground and Flight Application Software Team
    Keywords: Mechanical Engineering
    Type: KSC-E-DAA-TN58151
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...