ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (2)
  • Lymphocyte Activation  (2)
  • American Association for the Advancement of Science (AAAS)  (4)
  • 2015-2019  (2)
  • 2000-2004
  • 1985-1989  (2)
  • 1940-1944
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (4)
Years
Year
  • 1
    Publication Date: 1989-11-03
    Description: A complementary DNA (cDNA) for ubiquitin carboxyl-terminal hydrolase isozyme L3 was cloned from human B cells. The cDNA encodes a protein of 230 amino acids with a molecular mass of 26.182 daltons. The human protein is very similar to the bovine homolog, with only three amino acids differing in over 100 residues compared. The amino acid sequence deduced from the cDNA was 54% identical to that of the neuron-specific protein PGP 9.5. Purification of bovine PGP 9.5 confirmed that it is also a ubiquitin carboxyl-terminal hydrolase. These results suggest that a family of such related proteins exists and that their expression is tissue-specific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkinson, K D -- Lee, K M -- Deshpande, S -- Duerksen-Hughes, P -- Boss, J M -- Pohl, J -- New York, N.Y. -- Science. 1989 Nov 3;246(4930):670-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2530630" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/enzymology ; Base Sequence ; Cattle ; DNA/genetics ; Humans ; Isoenzymes/genetics ; Molecular Sequence Data ; Neuropeptides/*genetics/isolation & purification ; Sequence Homology, Nucleic Acid ; Thiolester Hydrolases/*genetics/isolation & purification ; Ubiquitin Thiolesterase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-25
    Description: Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)-immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3(+) regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lo, Bernice -- Zhang, Kejian -- Lu, Wei -- Zheng, Lixin -- Zhang, Qian -- Kanellopoulou, Chrysi -- Zhang, Yu -- Liu, Zhiduo -- Fritz, Jill M -- Marsh, Rebecca -- Husami, Ammar -- Kissell, Diane -- Nortman, Shannon -- Chaturvedi, Vijaya -- Haines, Hilary -- Young, Lisa R -- Mo, Jun -- Filipovich, Alexandra H -- Bleesing, Jack J -- Mustillo, Peter -- Stephens, Michael -- Rueda, Cesar M -- Chougnet, Claire A -- Hoebe, Kasper -- McElwee, Joshua -- Hughes, Jason D -- Karakoc-Aydiner, Elif -- Matthews, Helen F -- Price, Susan -- Su, Helen C -- Rao, V Koneti -- Lenardo, Michael J -- Jordan, Michael B -- 1RC2 HG005608/HG/NHGRI NIH HHS/ -- 1ZIAAI000769-14/PHS HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):436-40. doi: 10.1126/science.aaa1663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Development of the Immune System Section and Clinical and Molecular Genomics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. michael.jordan@cchmc.org. ; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. michael.jordan@cchmc.org. ; Molecular Development of the Immune System Section and Clinical and Molecular Genomics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Human Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. ; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. ; Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA. ; Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, and Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA. ; Departments of Pathology and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA, USA. ; Section of Allergy and Immunology, Nationwide Children's Hospital, Columbus, OH, USA. ; Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. ; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center/ University of Cincinnati, Cincinnati, OH, USA. ; Merck Research Laboratories, Merck & Co, Boston, MA, USA. ; Molecular Development of the Immune System Section and Clinical and Molecular Genomics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. Human Immunological Diseases Unit, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, AL, USA. Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, and Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA. Departments of Pathology and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA, USA. Section of Allergy and Immunology, Nationwide Children's Hospital, Columbus, OH, USA. Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center/ University of Cincinnati, Cincinnati, OH, USA. Merck Research Laboratories, Merck & Co, Boston, MA, USA. Marmara University, Division of Pediatric Allergy and Immunology, Istanbul, Turkey. ; Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center/ University of Cincinnati, Cincinnati, OH, USA. michael.jordan@cchmc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206937" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Adaptor Proteins, Signal Transducing/genetics/*metabolism ; Adolescent ; Autoimmune Diseases/*drug therapy/metabolism ; CTLA-4 Antigen/*deficiency/genetics ; Child ; Chloroquine/pharmacology ; Common Variable Immunodeficiency/*drug therapy/metabolism ; Endosomes/metabolism ; Female ; Forkhead Transcription Factors/analysis ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Immunoconjugates/*therapeutic use ; Lung Diseases, Interstitial/drug therapy/metabolism ; Lymphocyte Activation ; Lysosomes/metabolism ; Male ; Proteolysis ; T-Lymphocytes/drug effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-29
    Description: To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tirosh, Itay -- Izar, Benjamin -- Prakadan, Sanjay M -- Wadsworth, Marc H 2nd -- Treacy, Daniel -- Trombetta, John J -- Rotem, Asaf -- Rodman, Christopher -- Lian, Christine -- Murphy, George -- Fallahi-Sichani, Mohammad -- Dutton-Regester, Ken -- Lin, Jia-Ren -- Cohen, Ofir -- Shah, Parin -- Lu, Diana -- Genshaft, Alex S -- Hughes, Travis K -- Ziegler, Carly G K -- Kazer, Samuel W -- Gaillard, Aleth -- Kolb, Kellie E -- Villani, Alexandra-Chloe -- Johannessen, Cory M -- Andreev, Aleksandr Y -- Van Allen, Eliezer M -- Bertagnolli, Monica -- Sorger, Peter K -- Sullivan, Ryan J -- Flaherty, Keith T -- Frederick, Dennie T -- Jane-Valbuena, Judit -- Yoon, Charles H -- Rozenblatt-Rosen, Orit -- Shalek, Alex K -- Regev, Aviv -- Garraway, Levi A -- 1U24CA180922/CA/NCI NIH HHS/ -- DP2 OD020839/OD/NIH HHS/ -- K99 CA194163/CA/NCI NIH HHS/ -- K99CA194163/CA/NCI NIH HHS/ -- P01CA163222/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- P50GM107618/GM/NIGMS NIH HHS/ -- R35CA197737/CA/NCI NIH HHS/ -- U54CA112962/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):189-96. doi: 10.1126/science.aad0501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ; HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Surgical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Ludwig Center at Harvard, Boston, MA 02215, USA. ; Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Department of Immunology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Biology and Koch Institute, MIT, Boston, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124452" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Communication ; Cell Cycle ; Drug Resistance, Neoplasm/genetics ; Endothelial Cells/pathology ; Genomics ; Humans ; Immunotherapy ; Lymphocyte Activation ; Melanoma/*genetics/*secondary/therapy ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Metastasis ; RNA/genetics ; Sequence Analysis, RNA ; Single-Cell Analysis ; Skin Neoplasms/*pathology ; Stromal Cells/pathology ; T-Lymphocytes/immunology/pathology ; Transcriptome ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-12-23
    Description: Hypocalcemic vitamin D-resistant rickets is a human genetic disease resulting from target organ resistance to the action of 1,25-dihydroxyvitamin D3. Two families with affected children homozygous for this autosomal recessive disorder were studied for abnormalities in the intracellular vitamin D receptor (VDR) and its gene. Although the receptor displays normal binding of 1,25-dihydroxyvitamin D3 hormone, VDR from affected family members has a decreased affinity for DNA. Genomic DNA isolated from these families was subjected to oligonucleotide-primed DNA amplification, and each of the nine exons encoding the receptor protein was sequenced for a genetic mutation. In each family, a different single nucleotide mutation was found in the DNA binding domain of the protein; one family near the tip of the first zinc finger (Gly----Asp) and one at the tip of the second zinc finger (Arg----Gly). The mutant residues were created in vitro by oligonucleotide directed point mutagenesis of wild-type VDR complementary DNA and this cDNA was transfected into COS-1 cells. The produced protein is biochemically indistinguishable from the receptor isolated from patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, M R -- Malloy, P J -- Kieback, D G -- Kesterson, R A -- Pike, J W -- Feldman, D -- O'Malley, B W -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2849209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcitriol/metabolism ; Cell Line ; Cell Line, Transformed ; Codon ; DNA/genetics/metabolism ; Exons ; Female ; Gene Amplification ; Homozygote ; Humans ; Hypocalcemia/*genetics ; Immunoblotting ; Male ; Molecular Sequence Data ; *Mutation ; Receptors, Calcitriol ; Receptors, Steroid/*genetics/metabolism ; Rickets/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...