ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Male  (6)
  • 2015-2019  (3)
  • 2005-2009  (3)
  • 1
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-03-03
    Description: Although expansion of trinucleotide repeats accounts for over 30 human diseases, mechanisms of repeat instability remain poorly understood. We show that a Drosophila model for the CAG/polyglutamine (polyQ) disease spinocerebellar ataxia type 3 recapitulates key features of human CAG-repeat instability, including large repeat changes and strong expansion bias. Instability is dramatically enhanced by transcription and modulated by nuclear excision repair and a regulator of DNA repair adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB)-binding protein-a histone acetyltransferase (HAT) whose decreased activity contributes to polyQ disease. Pharmacological treatment to normalize acetylation suppressed instability. Thus, toxic consequences of pathogenic polyQ protein may include enhancing repeat instability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jung, Joonil -- Bonini, Nancy -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1857-9. Epub 2007 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphila, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17332375" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Animals, Genetically Modified ; Anticipation, Genetic ; CREB-Binding Protein/genetics/*metabolism ; DNA Repair ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics ; Female ; Fragile X Syndrome/genetics ; *Genomic Instability ; Histone Deacetylase Inhibitors ; Humans ; Huntington Disease/genetics ; Hydroxamic Acids/pharmacology ; Machado-Joseph Disease/*genetics ; Male ; Models, Animal ; Peptides/chemistry ; *Transcription, Genetic ; Transgenes ; *Trinucleotide Repeat Expansion ; *Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-31
    Description: Mutations in the gene encoding the transcriptional repressor methyl-CpG binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome. Loss of function as well as increased dosage of the MECP2 gene cause a host of neuropsychiatric disorders. To explore the molecular mechanism(s) underlying these disorders, we examined gene expression patterns in the hypothalamus of mice that either lack or overexpress MeCP2. In both models, MeCP2 dysfunction induced changes in the expression levels of thousands of genes, but unexpectedly the majority of genes (approximately 85%) appeared to be activated by MeCP2. We selected six genes and confirmed that MeCP2 binds to their promoters. Furthermore, we showed that MeCP2 associates with the transcriptional activator CREB1 at the promoter of an activated target but not a repressed target. These studies suggest that MeCP2 regulates the expression of a wide range of genes in the hypothalamus and that it can function as both an activator and a repressor of transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chahrour, Maria -- Jung, Sung Yun -- Shaw, Chad -- Zhou, Xiaobo -- Wong, Stephen T C -- Qin, Jun -- Zoghbi, Huda Y -- HD024064/HD/NICHD NIH HHS/ -- NS057819/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-19/HD/NICHD NIH HHS/ -- R01 NS057819/NS/NINDS NIH HHS/ -- R01 NS057819-02/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 May 30;320(5880):1224-9. doi: 10.1126/science.1153252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18511691" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Disease Models, Animal ; *Gene Expression Regulation ; Hypothalamic Diseases/*genetics ; Hypothalamus/*metabolism ; Male ; Methyl-CpG-Binding Protein 2/genetics/*physiology ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/metabolism ; Nervous System Diseases/*genetics ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Repressor Proteins/genetics/physiology ; Rett Syndrome/genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Transcription Factors/genetics/physiology ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-04-11
    Description: Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by 〉50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981508/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981508/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Chris -- Ouk, Samedy -- Clegg, Nicola J -- Chen, Yu -- Watson, Philip A -- Arora, Vivek -- Wongvipat, John -- Smith-Jones, Peter M -- Yoo, Dongwon -- Kwon, Andrew -- Wasielewska, Teresa -- Welsbie, Derek -- Chen, Charlie Degui -- Higano, Celestia S -- Beer, Tomasz M -- Hung, David T -- Scher, Howard I -- Jung, Michael E -- Sawyers, Charles L -- P50 CA092629/CA/NCI NIH HHS/ -- P50 CA092629-10/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):787-90. doi: 10.1126/science.1168175. Epub 2009 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359544" target="_blank"〉PubMed〈/a〉
    Keywords: Androgen Antagonists/metabolism/pharmacokinetics/pharmacology/*therapeutic use ; Anilides/metabolism/pharmacology ; Animals ; Antineoplastic Agents/metabolism/pharmacokinetics/pharmacology/*therapeutic use ; Biological Availability ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cell Proliferation/drug effects ; DNA/metabolism ; Drug Screening Assays, Antitumor ; Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Male ; Mice ; Nitriles/metabolism/pharmacology ; Phenylthiohydantoin/*analogs & ; derivatives/metabolism/pharmacokinetics/pharmacology/therapeutic use ; Prostatic Neoplasms/*drug therapy/pathology ; Receptors, Androgen/chemistry/genetics/metabolism ; Tosyl Compounds/metabolism/pharmacology ; Transcription, Genetic/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-14
    Description: Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Itkin, Tomer -- Gur-Cohen, Shiri -- Spencer, Joel A -- Schajnovitz, Amir -- Ramasamy, Saravana K -- Kusumbe, Anjali P -- Ledergor, Guy -- Jung, Yookyung -- Milo, Idan -- Poulos, Michael G -- Kalinkovich, Alexander -- Ludin, Aya -- Kollet, Orit -- Shakhar, Guy -- Butler, Jason M -- Rafii, Shahin -- Adams, Ralf H -- Scadden, David T -- Lin, Charles P -- Lapidot, Tsvee -- EB017274/EB/NIBIB NIH HHS/ -- HL100402/HL/NHLBI NIH HHS/ -- R01 EB017274/EB/NIBIB NIH HHS/ -- U01 HL100402/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):323-8. doi: 10.1038/nature17624. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel. ; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Harvard Stem Cell Institute, Cambridge, Massachusetts 02114, USA. ; Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis and Faculty of Medicine, University of Munster, D-48149 Munster, Germany. ; Internal Medicine Department, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel. ; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Ly/metabolism ; Arteries/cytology/physiology ; Blood Vessels/*cytology/*physiology ; Bone Marrow/*blood supply ; Bone Marrow Cells/cytology ; Cell Differentiation ; Cell Movement ; Cell Self Renewal ; Cell Survival ; Chemokine CXCL12/metabolism ; Endothelial Cells/physiology ; Female ; *Hematopoiesis ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/cytology ; Leukocytes/cytology ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Nestin/metabolism ; Pericytes/physiology ; Permeability ; Plasma/metabolism ; Reactive Oxygen Species/metabolism ; Receptors, CXCR4/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-05
    Description: Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osswald, Matthias -- Jung, Erik -- Sahm, Felix -- Solecki, Gergely -- Venkataramani, Varun -- Blaes, Jonas -- Weil, Sophie -- Horstmann, Heinz -- Wiestler, Benedikt -- Syed, Mustafa -- Huang, Lulu -- Ratliff, Miriam -- Karimian Jazi, Kianush -- Kurz, Felix T -- Schmenger, Torsten -- Lemke, Dieter -- Gommel, Miriam -- Pauli, Martin -- Liao, Yunxiang -- Haring, Peter -- Pusch, Stefan -- Herl, Verena -- Steinhauser, Christian -- Krunic, Damir -- Jarahian, Mostafa -- Miletic, Hrvoje -- Berghoff, Anna S -- Griesbeck, Oliver -- Kalamakis, Georgios -- Garaschuk, Olga -- Preusser, Matthias -- Weiss, Samuel -- Liu, Haikun -- Heiland, Sabine -- Platten, Michael -- Huber, Peter E -- Kuner, Thomas -- von Deimling, Andreas -- Wick, Wolfgang -- Winkler, Frank -- England -- Nature. 2015 Dec 3;528(7580):93-8. doi: 10.1038/nature16071. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, INF 224, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), INF 224, 69120 Heidelberg, Germany. ; Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany. ; Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universitat Munchen, 81675 Munich, Germany. ; Neurosurgery Clinic, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Department of Neurophysiology, Institute of Physiology, University of Wurzburg, 97070 Wurzburg, Germany. ; Department of Medical Physics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany. ; Light Microscopy Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway. ; Institute of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria. ; Tools For Bio-Imaging, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany. ; Institute of Physiology II, Eberhard Karls University of Tubingen, 72074 Tubingen, Germany. ; Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria. ; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada. ; Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada. ; Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada. ; Helmholtz Young Investigator Group, Normal and Neoplastic CNS Stem Cells, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; CCU Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany. ; Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536111" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytoma/metabolism/*pathology/radiotherapy ; Brain Neoplasms/metabolism/*pathology/radiotherapy ; Cell Communication/radiation effects ; Cell Death/radiation effects ; Cell Proliferation/radiation effects ; Cell Surface Extensions/metabolism/radiation effects ; Cell Survival/radiation effects ; Connexin 43/metabolism ; Disease Progression ; GAP-43 Protein/metabolism ; Gap Junctions/*metabolism/radiation effects ; Glioma/metabolism/pathology/radiotherapy ; Humans ; Male ; Mice ; Mice, Nude ; Neoplasm Invasiveness ; Radiation Tolerance/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...