ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: An inexpensive, laboratory-based, strain gauge valve gape monitor (SGM) was developed to monitor the valve gape behavior of bivalve molluscs in response to diel-cycling hypoxia. A Wheatstone bridge was connected to strain gauges that were attached to the shells of oysters (Crassostrea virginica). The recorded signals allowed for the opening and closing of the bivalves to be recorded continuously over two-day periods of experimentally-induced diel-cycling hypoxia and diel-cycling changes in pH. Here, we describe a protocol for developing an inexpensive strain gauge monitor and describe, in an example laboratory experiment, how we used it to measure the valve gape behavior of Eastern oysters (C. virginica), in response to diel-cycling hypoxia and cyclical changes in pH. Valve gape was measured on oysters subjected to cyclical severe hypoxic (0.6 mg/L) dissolved oxygen conditions with and without cyclical changes in pH, cyclical mild hypoxic (1.7 mg/L) conditions and normoxic (7.3 mg/L) conditions. We demonstrate that when oysters encounter repeated diel cycles, they rapidly close their shells in response to severe hypoxia and close with a time lag to mild hypoxia. When normoxia is restored, they rapidly open again. Oysters did not respond to cyclical pH conditions superimposed on diel cycling severe hypoxia. At reduced oxygen conditions, more than one third of the oysters closed simultaneously. We demonstrate that oysters respond to diel-cycling hypoxia, which must be considered when assessing the behavior of bivalves to dissolved oxygen. The valve SGM can be used to assess responses of bivalve molluscs to changes in dissolved oxygen or contaminants. Sealing techniques to better seal the valve gape strain gauges from sea water need further improvement to increase the longevity of the sensors.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN54019 , Journal of Visualized Experiments (e-ISSN 1940-087X); 138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-04
    Description: Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these channels. Here we show the activation of TRPC5 (canonical TRP 5) homomultimeric and TRPC5-TRPC1 heteromultimeric channels by extracellular reduced thioredoxin, which acts by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis, an inflammatory joint disease that disables millions of people worldwide. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, that endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and that blockade of the channels enhances secretory activity and prevents the suppression of secretion by thioredoxin. The data indicate the presence of a previously unrecognized ion-channel activation mechanism that couples extracellular thioredoxin to cell function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645077/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645077/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Shang-Zhong -- Sukumar, Piruthivi -- Zeng, Fanning -- Li, Jing -- Jairaman, Amit -- English, Anne -- Naylor, Jacqueline -- Ciurtin, Coziana -- Majeed, Yasser -- Milligan, Carol J -- Bahnasi, Yahya M -- Al-Shawaf, Eman -- Porter, Karen E -- Jiang, Lin-Hua -- Emery, Paul -- Sivaprasadarao, Asipu -- Beech, David J -- 077424/Wellcome Trust/United Kingdom -- 083857/Wellcome Trust/United Kingdom -- 18475/Arthritis Research UK/United Kingdom -- BB/D524875/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Jan 3;451(7174):69-72. doi: 10.1038/nature06414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Membrane and Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis, Rheumatoid/metabolism/pathology ; Cell Line ; Disulfides/chemistry/metabolism ; Electric Conductivity ; Humans ; Oxidation-Reduction/drug effects ; Patch-Clamp Techniques ; Rabbits ; TRPC Cation Channels/*agonists/chemistry/*metabolism ; Thioredoxins/chemistry/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-01-18
    Description: Concerted evolution is the production and maintenance of homogeneity within repeated families of DNA. Two mechanisms--unequal crossing over and biased gene conversion--have been the principal explanations of concerted evolution. Concerted evolution of ribosomal DNA (rDNA) arrays is thought to be largely the result of unequal crossing over. However, concerted evolution of rDNA in parthenogenetic lizards of hybrid origin is strongly biased toward one of two parental sequences, which is consistent with biased gene conversion as the operative mechanism. The apparent gene conversions are independent of initial genome dosage and result in homogenization of rDNA arrays across all nucleolar organizer regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hillis, D M -- Moritz, C -- Porter, C A -- Baker, R J -- New York, N.Y. -- Science. 1991 Jan 18;251(4991):308-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Texas, Austin 78712.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1987647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Blotting, Southern ; DNA, Ribosomal/*genetics ; Gene Conversion ; Karyotyping ; Lizards ; Nucleic Acid Hybridization ; Parthenogenesis ; Restriction Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-08-19
    Description: Eukaryotic flagella and cilia are built on a 9 + 2 array of microtubules plus 〉250 accessory proteins, forming a biological machine called the axoneme. Here we describe the three-dimensional structure of rapidly frozen axonemes from Chlamydomonas and sea urchin sperm, using cryoelectron tomography and image processing to focus on the motor enzyme dynein. Our images suggest a model for the way dynein generates force to slide microtubules. They also reveal two dynein linkers that may provide "hard-wiring" to coordinate motor enzyme action, both circumferentially and along the axoneme. Periodic densities were also observed inside doublet microtubules; these may contribute to doublet stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicastro, Daniela -- Schwartz, Cindi -- Pierson, Jason -- Gaudette, Richard -- Porter, Mary E -- McIntosh, J Richard -- 2R37-GM55667/GM/NIGMS NIH HHS/ -- RR 000592/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):944-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, CB 347, University of Colorado, Boulder, CO 80309-0347, USA. nicastro@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/chemistry/ultrastructure ; Chlamydomonas reinhardtii/ultrastructure ; Cryoelectron Microscopy ; Dyneins/*chemistry/physiology/*ultrastructure ; Flagella/chemistry/physiology/*ultrastructure ; Freezing ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Male ; Microtubule-Associated Proteins ; Microtubules/chemistry/physiology/*ultrastructure ; Models, Biological ; Molecular Motor Proteins/chemistry/ultrastructure ; Protein Structure, Tertiary ; Sea Urchins ; Sperm Tail/chemistry/physiology/*ultrastructure ; Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-02
    Description: The first appearances of aragonite and calcite skeletons in 18 animal clades that independently evolved mineralization during the late Ediacaran through the Ordovician (approximately 550 to 444 million years ago) correspond to intervals when seawater chemistry favored aragonite and calcite precipitation, respectively. Skeletal mineralogies rarely changed once skeletons evolved, despite subsequent changes in seawater chemistry. Thus, the selection of carbonate skeletal minerals appears to have been dictated by seawater chemistry at the time a clade first acquired its mineralized skeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, Susannah M -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA. porter@geol.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Calcification, Physiologic ; Calcium/analysis ; Calcium Carbonate/*analysis ; Chemical Precipitation ; Crystallization ; *Fossils ; Invertebrates/*chemistry ; Magnesium/analysis ; Seawater/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-02-14
    Description: The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lakhani, Saquib A -- Masud, Ali -- Kuida, Keisuke -- Porter, George A Jr -- Booth, Carmen J -- Mehal, Wajahat Z -- Inayat, Irteza -- Flavell, Richard A -- 1 K08 HD044580/HD/NICHD NIH HHS/ -- 5 K12 HD01401/HD/NICHD NIH HHS/ -- K08 DK002965/DK/NIDDK NIH HHS/ -- K08 DK002965-04/DK/NIDDK NIH HHS/ -- K12 HD00850/HD/NICHD NIH HHS/ -- NIDDK P30-34989/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):847-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Inducing Factor/metabolism ; Caspase 3 ; Caspase 7 ; Caspases/deficiency/*metabolism ; Cell Nucleus/metabolism ; Cell Shape ; Cell Survival ; Cells, Cultured ; Cytochromes c/metabolism ; DNA Fragmentation ; Female ; Fibroblasts/cytology ; Heart/embryology ; Heart Defects, Congenital/etiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/*physiology ; Mitochondrial Membranes/physiology ; Permeability ; T-Lymphocytes/cytology ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-25
    Description: No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen alpha1- and alpha2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welker, Frido -- Collins, Matthew J -- Thomas, Jessica A -- Wadsley, Marc -- Brace, Selina -- Cappellini, Enrico -- Turvey, Samuel T -- Reguero, Marcelo -- Gelfo, Javier N -- Kramarz, Alejandro -- Burger, Joachim -- Thomas-Oates, Jane -- Ashford, David A -- Ashton, Peter D -- Rowsell, Keri -- Porter, Duncan M -- Kessler, Benedikt -- Fischer, Roman -- Baessmann, Carsten -- Kaspar, Stephanie -- Olsen, Jesper V -- Kiley, Patrick -- Elliott, James A -- Kelstrup, Christian D -- Mullin, Victoria -- Hofreiter, Michael -- Willerslev, Eske -- Hublin, Jean-Jacques -- Orlando, Ludovic -- Barnes, Ian -- MacPhee, Ross D E -- England -- Nature. 2015 Jun 4;522(7554):81-4. doi: 10.1038/nature14249. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] BioArCh, University of York, York YO10 5DD, UK [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; BioArCh, University of York, York YO10 5DD, UK. ; Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen K, Denmark. ; Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; CONICET- Division Paleontologia de Vertebrados, Museo de La Plata. Facultad de Ciencias Naturales y Museo de La Plata, Universidad Nacional de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina. ; Seccion Paleontologia de Vertebrados. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", 470 Angel Gallardo Av., C1405DJR, Buenos Aires, Argentina. ; Institute of Anthropology, Johannes Gutenberg-University, Anselm-Franz-von-Bentzel-Weg 7, D-55128 Mainz, Germany. ; Department of Chemistry, University of York, York YO10 5DD, UK. ; Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK. ; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA. ; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK. ; Applications Development, Bruker Daltonik GmbH, 28359 Bremen, Germany. ; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark. ; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. ; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland. ; 1] BioArCh, University of York, York YO10 5DD, UK [2] Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam OT Golm, Germany. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Mammalogy, American Museum of Natural History, New York, New York 10024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799987" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone and Bones/chemistry ; Cattle ; Collagen Type I/*chemistry/genetics ; Female ; *Fossils ; Mammals/*classification ; Perissodactyla/classification ; *Phylogeny ; Placenta ; Pregnancy ; Proteomics ; South America
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maruyama, Y -- Fontanesi, J -- Porter, A T -- Wierzbicki, J G -- Gaspar, L -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):714-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Boron Neutron Capture Therapy ; Brain Neoplasms/*radiotherapy ; Californium/*therapeutic use ; Humans ; Neutron Capture Therapy/*methods ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-12-02
    Description: Extracellular signaling proteins encoded by the hedgehog (hh) multigene family are responsible for the patterning of a variety of embryonic structures in vertebrates and invertebrates. The Drosophila hh gene has now been shown to generate two predominant protein species that are derived by an internal autoproteolytic cleavage of a larger precursor. Mutations that reduced the efficiency of autoproteolysis in vitro diminished precursor cleavage in vivo and also impaired the signaling and patterning activities of the HH protein. The two HH protein species exhibited distinctive biochemical properties and tissue distribution, and these differences suggest a mechanism that could account for the long- and short-range signaling activities of HH in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, J J -- Ekker, S C -- von Kessler, D P -- Porter, J A -- Sun, B I -- Beachy, P A -- New York, N.Y. -- Science. 1994 Dec 2;266(5190):1528-37.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7985023" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Drosophila/embryology/genetics/*metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/*metabolism ; Embryonic Induction ; Gene Expression Regulation, Developmental ; Genes, Insect ; Hedgehog Proteins ; Models, Biological ; Molecular Sequence Data ; Mutation ; Protein Precursors/chemistry/genetics/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/genetics/*metabolism ; Serine Endopeptidases/chemistry ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...