ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-12-03
    Description: Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of survivors. Our data suggest that sustained mitochondrial dysfunction, rather than atrophy alone, underlies chronic sepsis-induced muscle weakness. This study emphasizes that conventional efforts that aim to recover muscle quantity will likely remain ineffective for regaining strength and improving quality of life after sepsis until deficiencies in muscle quality are addressed.
    Electronic ISSN: 2050-084X
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-06
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley on behalf of American Ceramic Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-22
    Print ISSN: 1546-542X
    Electronic ISSN: 1744-7402
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley on behalf of American Ceramic Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN20947 , Benson Memorial Lecture; Apr 07, 2015; Oxford, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-26
    Description: The presentation provides an overview of the NASA organization and several highlights of major NASA Programs and Projects. The presentation then provides additional details regarding project management processes and requirements at NASA. The briefing concludes with insights and information regarding management, communication and collaboration between NASA and international partners on joint projects. All information contained in this briefing is from the public domain.
    Keywords: Administration and Management
    Type: KSC-E-DAA-TN70502
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
    Keywords: Exobiology
    Type: GRC-E-DAA-TN11764 , International Symposium for Physical Sciences in Space; Nov 03, 2013 - Nov 08, 2013; Orlando, FL; United States|ASGSR Meeting; Nov 03, 2013 - Nov 08, 2013; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The geneLAB project is designed to leverage the value of large 'omics' datasets from molecular biology projects conducted on the ISS by making these datasets available, citable, discoverable, interpretable, reusable, and reproducible. geneLAB will create a collaboration space with an integrated set of tools for depositing, accessing, analyzing, and modeling these diverse datasets from spaceflight and related terrestrial studies.
    Keywords: Life Sciences (General); Space Sciences (General)
    Type: ARC-E-DAA-TN15739 , American Society for Gravitational and Space Research Conference; Oct 23, 2014 - Oct 26, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: The E. coli AntiMicrobial Satellite(EcAMSat) mission will investigate space microgravity affects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals. EcAMSat is being developed through a partnership between NASA Ames Research Center and the Stanford University School of Medicine. Scientists believe that the results of this experiment could help design effective countermeasures to protect astronauts health during long duration human space missions.
    Keywords: Life Sciences (General)
    Type: EcAMSat-FS-061214 , FS #2014-06-02-ARC , ARC-E-DAA-TN15812
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Early on, bed rest was recognized as a method for inducing many of the physiological changes experienced by spaceflight. Head-down tilt (HDT) bed rest was first introduced as an analog for spaceflight by a Soviet team led by Genin and Kakurin. Their study was performed in 1970 (at -4 degrees) and lasted for 30 days; results were reported in the Russian Journal of Space Biology (Kosmicheskaya Biol. 1972; 6(4): 26-28 & 45-109). The goal was to test physiological countermeasures for cosmonauts who would soon begin month-long missions to the Salyut space station. HDT was chosen to produce a similar sensation of blood flow to the head reported by Soyuz cosmonauts. Over the next decade, other tilt angles were studied and comparisons with spaceflight were made, showing that HDT greater than 4 degrees was superior to horizontal bed rest for modeling acute physiological changes observed in space; but, at higher angles, subjects experienced greater discomfort without clearly improving the physiological comparison to spaceflight. A joint study performed by US and Soviet investigators, in 1979, set the goal of standardization of baseline conditions and chose 6-degrees HDT. This effectively established 6-degree HDT bed rest as the internationally-preferred analog for weightlessness and, since 1990, nearly all further studies have been conducted at 6-degrees HDT. A thorough literature review (1970-2010) revealed 534 primary scientific journal articles which reported results from using HDT as a physiological analog for spaceflight. These studies have ranged from as little as 10 minutes to the longest duration of 370 days. Long-term studies lasting four weeks or more have resulted in over 170 primary research articles. Today, the 6-degree HDT model provides a consistent, thoroughly-tested, ground-based analog for spaceflight and allows the proper scientific controls for rigorous testing of physiological countermeasures; however, all models have their strengths and limits. The 6-degrees HDT model must continue to be scrutinized, re-examined, validated and compared to other analog environments whenever possible. Only by understanding the strengths and limits of this model, will it continue to serve as a critical physiological analog to spaceflight for many more years to come.
    Keywords: Behavioral Sciences; Aerospace Medicine
    Type: ARC-E-DAA-TN4096 , American Society for Gravitational and Space Biology Conference; Nov 03, 2011; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...