ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-03
    Description: PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7 approximately ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koyano, Fumika -- Okatsu, Kei -- Kosako, Hidetaka -- Tamura, Yasushi -- Go, Etsu -- Kimura, Mayumi -- Kimura, Yoko -- Tsuchiya, Hikaru -- Yoshihara, Hidehito -- Hirokawa, Takatsugu -- Endo, Toshiya -- Fon, Edward A -- Trempe, Jean-Francois -- Saeki, Yasushi -- Tanaka, Keiji -- Matsuda, Noriyuki -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan. ; Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan. ; Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan. ; Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan. ; Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. ; 1] JST-CREST/Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan [2] JST-CREST/Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan. ; McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Fibroblasts ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Mitochondria/metabolism ; Mutation/genetics ; Parkinson Disease ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 173 (1982), S. 29-33 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The nephrons of carp (Cyprinus carpio) and goldfish (Carassius auratus) were examined histologically and also histochemically for enzymes. In both species the distal and collecting tubules have much wider lumens than do the other renal tubules; thus urine probably flows more slowly in these larger tubules. Enzyme histochemistry shows that epithelium of the neck and proximal and intermediate tubules respires anaerobically. whereas that of the distal and collecting tubules respires aerobically. The distribution of Na-K-ATPase in the distal and collecting tubules indicates that they also transport sodium actively. The slow flow of urine and the energy produced by aerobic metabolism probably increase the efficiency of active transport.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 26 (1984), S. 261-278 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Biosynthesis of cartilage proteoglycan was examined in a model system of cultured chondrocytes from a transplantable rat chondrosarcoma. Extensive modification with the addition of chondroitin sulfate glycosaminoglycan, N-linkcd oligosac-charide, and O-linked oliogosaccharide is required to convert a newly synthesized core protein precursor into a proteoglycan. Kinetic analyses revealed the presence of a large pool of core protein precursor (t1/2 ∼ 90 min) awaiting completion into proteoglycan. The large t1/2 of this pool allowed kinetic labeling experiments with a variety of radioactive precursors to distinguish between early biosynthetic events associated primarily with the rough endoplasmic reticulum from late events associated primarily with the Golgi apparatus. The results of a series of experiments indicated that the addition of N-linked oligosaccharide chains occurs early in the biosynthetic process in association with the rough endoplasmic reticulum, whereas the initiation and completion of O-linked oligosaccharides occurs much later, at about the same time as chondroitin sulfate synthesis. This also indicated that keratan sulfate chains, when present in the completed molecule, are added in the Golgi apparatus, as they are probably built on oligosaccharide primers closely related to the O-oligosaccharide chains. Furthermore, when 3H-glucose was used as the precursor, the entry of label into xylose, the linkage sugar between the core protein and the chondroitin sulfate chain, was found to occur within 5 min of the entry of label into galactose and galactosamine in the remainder of the chondroitin sulfate chain. This indicated that the initiation and completion of the chondroitin sulfate chain occurs late in the pathway probably entirely in the Golgi apparatus. Thus, proteoglycan synthesis can be described as occurring in two stages in this system, translation and N-glycosylation of a core protein precursor which has a long half-life in the rough endoplasmic reticulum, followed by extensive rapid modification in the Golgi complex in which the majority of glycosaminoglycan and oligosaccharide chains are added to the core protein precursor with subsequent rapid secretion into the extracellular matrix.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The basic culture requirements and several physical characteristics were defined for megakaryocytic colony-forming cells (CFU-M) from normal human marrow growing in methylcellulose. Ficoll-hypaque separated mononuclear cells from human, marrow gave rise to megakaryocytic colonies in the presence of normal human plasma and phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). Their identity as megakaryocytic colonies was confirmed by immunofluorescence staining with a monoclonal antibody to human factor VIII antigen and by electron microscopy of individually harvested colonies. Demonstration of the single-cell origin of the colonies was provided by analysis of the glucose-6-phosphate dehydrogenase (G-6-PD) enzyme type of individually harvested colonies grown from a G-6-PD heterozygote. The colonies grew best in heparinized or citrated plasma as opposed to serum. Detailed studies suggested that platelet-release products were responsible for this difference. Tritiated thymidine suicide studies showed that the percentage of CFU-M in DNA synthesis was 23 ± 8% (n = 10). The modal velocity sedimentation rate of CFU-M was 4.9 ± 0.6 mm/hr (n = 4) while that of concurrently studied granulocyte/macrophage colony-forming cells (CFU-GM) was 5.7 ± 0.5 mm/hr. Examination of the PHA-LCM dose-response characteristics suggested the presence in the conditioned medium of an inhibitor to megakaryocyte colony growth which was partially removed by chromatography of the medium on Sephadex G-100. The resulting conditioned medium increased the cloning efficiency for CFU-M compared with that with crude PHA-LCM (15.3 ± 7.0 and 8.2 ± 5.3/105 marrow cells, respectively).
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It was shown previously that mouse bone marrow cells transformed by simian virus 40 (SV40) show a reversible cell density-dependent phenotypic transition between the nonmacrophage (rapidly growing) and the macrophage (stationary) states; cells in low-density cultures are in the growing phase, express SV40 T antigen strongly as revealed by immunofluorescence, and lose typical macrophage properties such as immune phagocytosis; whereas cells in high-density cultures are in the stationary (nongrowing) phase, express SV40 T antigen weakly, and recover their macrophage properties (Takayama, 1980). In the hope of clarifying the relationship between T antigen, cell growth, and macrophage-specific cellular function, we examined the behavior at 33 and 39°C of mouse bone marrow cells transformed by an SV40 gene A mutant (tsA640) whose mutation renders the molecular weight of 90K (large) T antigen temperature sensitive. The results presented in this paper suggest that functional large T antigen is required for cells in the stationary phase to initiate multiplication when transferred at lower density and is not necessary for a majority of them to maintain the nongrowing state (viability) at both high and lower cell densities, whereas it is required for cells in the growing phase to keep multiplying without losing their viability. The results also suggest that the functional large T antigen does not play a direct role in maintaining the cells as either phagocytic or nonphagocytic. It is also suggested that the physiological or tsA mutation-mediated arrest of growth may or may not be accompanied by induction and/or maintenance of cellular phagocytic activity depending on the culture state.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 119 (1984), S. 82-88 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Four temperature-sensitive (ts) mutants of rat 3Y1 cells (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested at 39.8°C mainly with a 2N DNA content (temperature-arrested cells). The states of these cells were compared with findings in case of cells arrested at 33.8°C at saturation density (density-arrested cells), with regard to the ability to enter S phase after release from arrest or after serum stimulation at 39.8°C. With the 3Y1tsD123, the ts defect is an event which seems essential for the initiation of S phase and occurs after mitosis but not after release from the density arrest. The defect in 3Y1tsF121 related to the efficiency of utilization of serum component(s). In case of 3Y1tsG125, the state of temperature arrest appeared to locate between the state of density arrest and the beginning of S phase. There was no significant difference between the density- and the temperature-arrested cells, in case of 3Y1tsH203.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 120 (1984), S. 181-187 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: To elucidate conditions which affect the lag time for resting cells to enter S phase after serum stimulation, we used a wild-type 3Y1 rat fibroblast line and four temperature-sensitive mutants of 3Y1 (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203). Among these five lines, in only tsG125 cells was there an obviously prolonged lag time with increase in time in resting state at 33.8°C. The resting wild-type 3Y1 cells, preexposed to 39.8°C, also showed a prolongation of lag time. The prolongation in tsG125 had a certain limit. Preexposure to 39.8°C before serum stimulation accelerated such prolongation in tsG125 to its limit, but did not change the limit, per se. Resting tsG125 cells stimulated by serum at 39.8°C, did not enter S phase, yet they did advance toward S phase. When they were kept at 39.8°C, they retreated toward a deeper resting state (“GO”) with time. These retreats correlated with the decrease in stimulating activity in the culture media. About 20% of the resting tsG125 cells stimulated by serum at 39.8°C were committed to enter S phase, when the extent of commitment was examined at 33.8°C. Most of the tsG125 cells committed at 33.8°C did not enter S phase, when the extent of commitment was examined at 39.8°C. More cells were committed after stimulation at 33.8°C than at 39.8°C, when the test was done at 33.8°C. We suggest that resting cells may be reversibly changed within range of resting states, in either direction, that is, advance toward S phase or retreat toward deeper “GO”. These changes may be determined by alterations in the balance between synthesis and decay of the preparedness for the initiation of DNA synthesis caused by cellular response to environmental changes (e.g., medium activity, temperature, etc.). The ts defect in tsG125 may affect the cell cycle progression, both before and after commitment by serum.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cultures of mouse macrophage cell lines transformed by wild-type or the tsA640 mutant of simian virus 40 (SV40) show a reversible phenotypic transition between the nonmacrophage (proliferating phase) and the macrophage (stationary phase) states (Takayama, 1980; Tanigawa et al., 1983). Distribution of DNA content in the cultures of the tsA640-transformed macrophage lines in the process of the phenotypic transition was determined by flow cytometry. Taking the mean DNA content of mouse peritoneal macrophages as 1 unit in the scale of fluorescence intensity in the flow cytogram, the transformed macrophages showed, at 33°C, two peaks, one located around the 1.0-unit position (peak 1.0) and the other around the 1.6-unit position (peak 1.6), and a plateau distribution continuing to 3.2 units. Peak 1.0 was predominant in the stationary-phase culture, whereas peak 1.6 was predominant in the proliferating-phase culture. Almost the entire population of the strictly resting culture, which was obtained by culturing the stationary-phase culture for a further 5 days at nonpermissive temperature (39°C), was phagocytic, and had accumulated at peak 1.0. Cells in peak 1.0 moved to peak 1.6 and to higher positions, after the strictly resting culture was sparsely reseeded and incubated at 33°C. In contrast, the DNA content distribution of the successively proliferating cells, which were obtained by repeated passage of an extensively proliferating culture and none of which were phagocytic, was similar to that of proliferating hypotetraploid BALB/c3T3 fibroblasts with a G1 peak at 1.6 unit followed by a plateau containing S- and G2-phase cells. The peak 1.0 cell population appeared from the recloned population of the successively proliferating cells in company with the restoration of the culture condition-dependent phagocytic ability when cocultured with primary macrophages. Each peak in the flow cytogram reflected fairly well DNA content per cell as determined by other methods.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 110 (1982), S. 267-270 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Rat 3Y1 cells arrested at early S by hydroxyurea traversed the remainder of S and G2 and completed mitosis after removal of the drug, irrespective of the absence of serum from the culture medium. When cells were deprived of serum for a period between early S and mitosis after removal of hydroxyurea, the cells delayed entry into S in the presence of serium in the second generation for the time length approximately equal to that of serum deprivation. When mitotic cells, which had been continously exposed to serum after removal of hydroxyurea, were deprived of serum for the next 24 hours and then were reexposed to serum, the cells delayed entry into S for more than 24 hours (more than the time length of serum deprivation). On the other hand, the cells already deprived of serum between early S and G2 in the first generation were less delayed in entry into S after postmitotic 24-hour serum deprivation than were the cells exposed to serum between early S and G2 in the first generation. These results suggest that serum-dependent events continue to occur in the first generation for on-time entry into S in the next generation, and that these premitotic events (the potential for entry into S) decay if serum is absent for a long period of time after mitosis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-12
    Description: In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate alpha-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the alphaN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tachiwana, Hiroaki -- Kagawa, Wataru -- Shiga, Tatsuya -- Osakabe, Akihisa -- Miya, Yuta -- Saito, Kengo -- Hayashi-Takanaka, Yoko -- Oda, Takashi -- Sato, Mamoru -- Park, Sam-Yong -- Kimura, Hiroshi -- Kurumizaka, Hitoshi -- England -- Nature. 2011 Jul 10;476(7359):232-5. doi: 10.1038/nature10258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21743476" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Autoantigens/*chemistry/metabolism ; Base Sequence ; Chromosomal Proteins, Non-Histone/*chemistry/metabolism ; Crystallography, X-Ray ; DNA/*chemistry/genetics/metabolism ; Histones/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; Nucleosomes/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...