ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • Mice  (15)
  • 2015-2019  (2)
  • 2010-2014  (12)
  • 1985-1989  (1)
Collection
  • Articles  (15)
Years
Year
  • 1
    Publication Date: 2014-05-03
    Description: PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7 approximately ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koyano, Fumika -- Okatsu, Kei -- Kosako, Hidetaka -- Tamura, Yasushi -- Go, Etsu -- Kimura, Mayumi -- Kimura, Yoko -- Tsuchiya, Hikaru -- Yoshihara, Hidehito -- Hirokawa, Takatsugu -- Endo, Toshiya -- Fon, Edward A -- Trempe, Jean-Francois -- Saeki, Yasushi -- Tanaka, Keiji -- Matsuda, Noriyuki -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan. ; Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan. ; Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan. ; Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Graduate School of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan. ; Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. ; 1] JST-CREST/Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan [2] JST-CREST/Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan. ; McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada. ; 1] Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan [2] Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Activation ; Fibroblasts ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Mitochondria/metabolism ; Mutation/genetics ; Parkinson Disease ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-19
    Description: Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for 〉10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Kruppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsui, Toshiyuki -- Leung, Danny -- Miyashita, Hiroki -- Maksakova, Irina A -- Miyachi, Hitoshi -- Kimura, Hiroshi -- Tachibana, Makoto -- Lorincz, Matthew C -- Shinkai, Yoichi -- 77805/Canadian Institutes of Health Research/Canada -- 92090/Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Apr 8;464(7290):927-31. doi: 10.1038/nature08858. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA (Cytosine-5-)-Methyltransferase/deficiency/genetics/metabolism ; DNA Methylation/genetics ; Embryonic Stem Cells/*enzymology/metabolism/*virology ; Endogenous Retroviruses/*genetics ; Fibroblasts ; Gene Deletion ; *Gene Silencing ; Histone-Lysine N-Methyltransferase/deficiency/genetics/*metabolism ; Mice ; Nuclear Proteins/metabolism ; Protein Methyltransferases/deficiency/genetics/*metabolism ; Proviruses/*genetics ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-23
    Description: Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1alpha) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1alpha is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific alpha myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, Wataru -- Xiao, Feng -- Canseco, Diana C -- Muralidhar, Shalini -- Thet, SuWannee -- Zhang, Helen M -- Abderrahman, Yezan -- Chen, Rui -- Garcia, Joseph A -- Shelton, John M -- Richardson, James A -- Ashour, Abdelrahman M -- Asaithamby, Aroumougame -- Liang, Hanquan -- Xing, Chao -- Lu, Zhigang -- Zhang, Cheng Cheng -- Sadek, Hesham A -- I01 BX000446/BX/BLRD VA/ -- R01 HL108104/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Departments of Physiology and Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Medicine, VA North Texas Health Care System, 4600 South Lancaster Road, Dallas, Texas 75216, USA. ; 1] Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26098368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cell Proliferation/genetics ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Myocardium/*cytology ; Myocytes, Cardiac/*cytology/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/genetics/*metabolism ; Recombinases/genetics/metabolism ; Signal Transduction ; Stem Cells/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-12-15
    Description: Insulin-like growth factor 1 (IGF-1) induces skeletal muscle maturation and enlargement (hypertrophy). These responses require protein synthesis and myofibril formation (myofibrillogenesis). However, the signaling mechanisms of myofibrillogenesis remain obscure. We found that IGF-1-induced phosphatidylinositol 3-kinase-Akt signaling formed a complex of nebulin and N-WASP at the Z bands of myofibrils by interfering with glycogen synthase kinase-3beta in mice. Although N-WASP is known to be an activator of the Arp2/3 complex to form branched actin filaments, the nebulin-N-WASP complex caused actin nucleation for unbranched actin filament formation from the Z bands without the Arp2/3 complex. Furthermore, N-WASP was required for IGF-1-induced muscle hypertrophy. These findings present the mechanisms of IGF-1-induced actin filament formation in myofibrillogenesis required for muscle maturation and hypertrophy and a mechanism of actin nucleation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takano, Kazunori -- Watanabe-Takano, Haruko -- Suetsugu, Shiro -- Kurita, Souichi -- Tsujita, Kazuya -- Kimura, Sumiko -- Karatsu, Takashi -- Takenawa, Tadaomi -- Endo, Takeshi -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1536-40. doi: 10.1126/science.1197767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148390" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/*metabolism ; Animals ; COS Cells ; Cercopithecus aethiops ; Hypertrophy ; Insulin-Like Growth Factor I/*metabolism ; Mice ; Mice, Inbred ICR ; *Muscle Development ; Muscle Proteins/chemistry/*metabolism ; Muscle, Skeletal/metabolism/pathology ; Myofibrils/metabolism ; Phosphatidylinositol 3-Kinase/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; Sarcomeres/*metabolism ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-07
    Description: Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuda, Toru -- Takeda, Shu -- Xu, Ren -- Ochi, Hiroki -- Sunamura, Satoko -- Sato, Tsuyoshi -- Shibata, Shinsuke -- Yoshida, Yutaka -- Gu, Zirong -- Kimura, Ayako -- Ma, Chengshan -- Xu, Cheng -- Bando, Waka -- Fujita, Koji -- Shinomiya, Kenichi -- Hirai, Takashi -- Asou, Yoshinori -- Enomoto, Mitsuhiro -- Okano, Hideyuki -- Okawa, Atsushi -- Itoh, Hiroshi -- NS065048/NS/NINDS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):490-3. doi: 10.1038/nature12115. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi 35, Shinjyuku-ku, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Remodeling ; Bone and Bones/anatomy & histology/*innervation/*metabolism ; Cell Differentiation ; Cells, Cultured ; Female ; Male ; Mice ; Organ Size ; Osteoblasts/cytology/metabolism ; Semaphorin-3A/deficiency/genetics/*metabolism ; Sensory Receptor Cells/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-01
    Description: Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-alpha pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2 in vitro. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR-alpha pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model db/db mice, and prolonged the shortened lifespan of db/db mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada-Iwabu, Miki -- Yamauchi, Toshimasa -- Iwabu, Masato -- Honma, Teruki -- Hamagami, Ken-ichi -- Matsuda, Koichi -- Yamaguchi, Mamiko -- Tanabe, Hiroaki -- Kimura-Someya, Tomomi -- Shirouzu, Mikako -- Ogata, Hitomi -- Tokuyama, Kumpei -- Ueki, Kohjiro -- Nagano, Tetsuo -- Tanaka, Akiko -- Yokoyama, Shigeyuki -- Kadowaki, Takashi -- England -- Nature. 2013 Nov 28;503(7477):493-9. doi: 10.1038/nature12656. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan [2] Department of Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo 113-0033, Japan [3] Department of Molecular Medicinal Sciences on Metabolic Regulation, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo 113-0033, Japan [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172895" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylate Kinase/metabolism ; Adiponectin/metabolism/pharmacology ; Adipose Tissue, White/drug effects/metabolism/pathology ; Administration, Oral ; Animals ; Diabetes Mellitus, Type 2/complications/*drug therapy/metabolism/prevention & ; control ; Diet, High-Fat ; Drug Evaluation, Preclinical ; Dyslipidemias/drug therapy ; Enzyme Activation/drug effects ; Glucose Intolerance/drug therapy ; Inflammation/drug therapy ; Insulin Resistance ; Liver/drug effects/metabolism/pathology ; Longevity/*drug effects ; Mice ; Mitochondria/drug effects/metabolism ; Muscle Fibers, Skeletal/cytology/drug effects ; Muscles/cytology ; Obesity/complications/drug therapy/genetics/*physiopathology ; Oxidative Stress/drug effects ; PPAR alpha/metabolism ; Piperidines/administration & dosage/metabolism/*pharmacology/therapeutic use ; Receptors, Adiponectin/*agonists/deficiency/genetics/metabolism ; Signal Transduction/drug effects ; Small Molecule Libraries/chemistry ; Transcription Factors/biosynthesis ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-19
    Description: Gain-of-function mutations in the fibroblast growth factor receptor 3 gene (FGFR3) result in skeletal dysplasias, such as thanatophoric dysplasia and achondroplasia (ACH). The lack of disease models using human cells has hampered the identification of a clinically effective treatment for these diseases. Here we show that statin treatment can rescue patient-specific induced pluripotent stem cell (iPSC) models and a mouse model of FGFR3 skeletal dysplasia. We converted fibroblasts from thanatophoric dysplasia type I (TD1) and ACH patients into iPSCs. The chondrogenic differentiation of TD1 iPSCs and ACH iPSCs resulted in the formation of degraded cartilage. We found that statins could correct the degraded cartilage in both chondrogenically differentiated TD1 and ACH iPSCs. Treatment of ACH model mice with statin led to a significant recovery of bone growth. These results suggest that statins could represent a medical treatment for infants and children with TD1 and ACH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamashita, Akihiro -- Morioka, Miho -- Kishi, Hiromi -- Kimura, Takeshi -- Yahara, Yasuhito -- Okada, Minoru -- Fujita, Kaori -- Sawai, Hideaki -- Ikegawa, Shiro -- Tsumaki, Noriyuki -- England -- Nature. 2014 Sep 25;513(7519):507-11. doi: 10.1038/nature13775. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan. ; 1] Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan [2] Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan. ; Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo 663-8501, Japan. ; Laboratory of Bone and Joint Diseases, Center for Integrated Medical Sciences, RIKEN, Tokyo 108-8639, Japan. ; 1] Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan [2] Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231866" target="_blank"〉PubMed〈/a〉
    Keywords: Achondroplasia/*drug therapy/genetics/*pathology ; Animals ; Bone Development/drug effects ; Cartilage/cytology/drug effects/pathology ; Cell Differentiation ; Chondrocytes/cytology/pathology ; Disease Models, Animal ; Female ; Fluorobenzenes/administration & dosage/pharmacology/therapeutic use ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & ; dosage/pharmacology/*therapeutic use ; Induced Pluripotent Stem Cells/cytology/pathology ; Lovastatin/pharmacology/therapeutic use ; Male ; Mice ; Mice, Inbred C57BL ; Phenotype ; Pyrimidines/administration & dosage/pharmacology/therapeutic use ; Receptor, Fibroblast Growth Factor, Type 3/*deficiency/*genetics ; Rosuvastatin Calcium ; Sulfonamides/administration & dosage/pharmacology/therapeutic use ; Thanatophoric Dysplasia/*drug therapy/genetics/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-19
    Description: The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal day 7 and the mechanisms of cardiomyocyte cell cycle arrest remain unclear. The homeodomain transcription factor Meis1 is required for normal cardiac development but its role in cardiomyocytes is unknown. Here we identify Meis1 as a critical regulator of the cardiomyocyte cell cycle. Meis1 deletion in mouse cardiomyocytes was sufficient for extension of the postnatal proliferative window of cardiomyocytes, and for re-activation of cardiomyocyte mitosis in the adult heart with no deleterious effect on cardiac function. In contrast, overexpression of Meis1 in cardiomyocytes decreased neonatal myocyte proliferation and inhibited neonatal heart regeneration. Finally, we show that Meis1 is required for transcriptional activation of the synergistic CDK inhibitors p15, p16 and p21. These results identify Meis1 as a critical transcriptional regulator of cardiomyocyte proliferation and a potential therapeutic target for heart regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahmoud, Ahmed I -- Kocabas, Fatih -- Muralidhar, Shalini A -- Kimura, Wataru -- Koura, Ahmed S -- Thet, Suwannee -- Porrello, Enzo R -- Sadek, Hesham A -- 1R01HL115275-01/HL/NHLBI NIH HHS/ -- R01 HL115275/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):249-53. doi: 10.1038/nature12054. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594737" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Animals, Newborn ; *Cell Cycle Checkpoints ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p15/metabolism ; Cyclin-Dependent Kinase Inhibitor p16/metabolism ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; Female ; Heart/anatomy & histology/physiology ; Homeodomain Proteins/genetics/*metabolism ; Male ; Mice ; Myocardial Infarction/metabolism/pathology ; Myocytes, Cardiac/*cytology/*metabolism ; Neoplasm Proteins/deficiency/genetics/*metabolism ; Regeneration ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-26
    Description: In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasevich, Timothy J -- Hayashi-Takanaka, Yoko -- Sato, Yuko -- Maehara, Kazumitsu -- Ohkawa, Yasuyuki -- Sakata-Sogawa, Kumiko -- Tokunaga, Makio -- Nagase, Takahiro -- Nozaki, Naohito -- McNally, James G -- Kimura, Hiroshi -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):272-5. doi: 10.1038/nature13714. Epub 2014 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan. ; Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan. ; Mab Institute Inc., Sapporo, 001-0021, Japan. ; 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252976" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Survival ; Chromatin Immunoprecipitation ; Enzyme Activation ; Genome/genetics ; Histones/*chemistry/*metabolism ; Kinetics ; Lysine/metabolism ; Mice ; Microscopy, Fluorescence ; Phosphorylation ; RNA Polymerase II/*metabolism ; *Single-Cell Analysis ; Time Factors ; Transcription Elongation, Genetic ; Transcription Initiation, Genetic ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...