ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 89 (1998), S. 281-287 
    ISSN: 1570-7458
    Keywords: Ostrinia zaguliaevi ; sex pheromone ; GC-EAD ; (Z)-9-tetradecenyl acetate ; (Z)-11-tetradecenyl acetate ; (E)-11-tetradecenyl acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sex pheromone blend of the butterbur borer, Ostrinia zaguliaevi (Lepidoptera: Pyralidae) was analyzed by means of gas chromatography-electroantennographic detection (GC-EAD), GC-mass spectrometry and a series of wind-tunnel bioassays. Four EAD-active compounds were detected in the female sex pheromone gland extract, and these were identified as tetradecyl acetate (14:OAc), (Z)-9-tetradecenyl acetate (Z9-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc) and (Z)-11-tetradecenyl acetate (Z11-14:OAc). The average amounts ± s.d. of the four compounds in a single sex pheromone gland were 7.9±3.7 ng, 10.1±3.2 ng, 1.1±0.5 ng and 11.6±5.1 ng, respectively. In a wind-tunnel bioassay, the ternary blend of Z9-, E11- and Z11-14:OAc at a ratio found in the sex pheromone gland (45:5:50) elicited the same behavioral responses from the males as did virgin females and pheromone gland extract. Removal of any single compound from the ternary blend significantly diminished the pheromonal activity, whereas addition of 14:OAc to the ternary blend had no effect on the males' behavioral responses. Therefore, it was concluded that the sex pheromone blend of O. zaguliaevi is composed of Z9-14:OAc, E11-14:OAc and Z11-14:OAc at a ratio of 45:5:50.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Ostrinia scapulalis ; sex pheromone ; (Z)-11-tetradecenyl acetate ; (E)-11-tetradecenyl acetate ; GC-EAD ; field trapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract By means of gas chromatography with electroantennographic detection (GC-EAD), gas chromatography–mass spectrometry (GC-MS), and a series of bioassays, (Z)-11-tetradecenyl acetate (Z11–14:OAc) and (E)-11-tetradecenyl acetate (E11–14:OAc) at a ratio of 100:3 were identified as the female sex pheromone of the adzuki bean borer,Ostrinia scapulalis. The average amounts ofZ11–14: OAc andE11–14:OAc in a single sex pheromone gland were 6.6 ± 2.4 ng and 0.2 ± 0.1 ng, respectively. In a wind-tunnel bioassay, the binary blend ofZ11- andE11–14:OAc elicited almost the same male behavioral responses as did virgin females and sex pheromone gland extract. In field trapping experiments, rubber septa impregnated with the binary blend (50 μg/septum) attracted more males than virgin females. The sex pheromone ofO. scapulalis thus turned out to be similar to that of theZ-type European corn borer,O. nubilalis, in both components and their ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-1561
    Keywords: Ostrinia furnacalis ; sex pheromone ; (E)-12-tetradecenyl acetate ; (Z)-12-tetradecenyl acetate ; field trap experiment ; geographic variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Geographic variation in the sex pheromone of the Asian corn borer, Ostrinia furnacalis (Guenée), was surveyed in populations sampled at four locations ranging from 39.7°N to 32.9°N in Japan. The sex pheromone of the three northern populations was composed of (E)- and (Z)-12-tetradecenyl acetates with a mean E proportion of 36–39%. The southernmost population (Nishigoshi) had the same components but with a significantly higher E composition of 44%. The frequency distribution of the E ratio in the Nishigoshi population exhibited a small peak near 38% and a major peak near 46%. A family-wise analysis of the sex pheromone of this population confirmed that there were two distinct phenotypes regarding the E ratio. An “≍46% E strain” inhabits southern parts of Japan, in addition to an “≍38% E strain,” which seems to be predominant in other regions of Japan.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1561
    Keywords: Cuticular hydrocarbon ; contact pheromone ; sex pheromone ; mating behavior ; Coleoptera ; Cerambycidae ; Psacothea hilaris ; (Z)-21-methyl-8-pentatriacontene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A major component of female contact sex pheromone of the yellow-spotted longicorn beetle,Psacothea hilaris (Pascoe), was isolated from the elytra and identified as (Z)-21-methyl-8-pentatriacontene. The synthetic compound released the typical mating behavior including holding, mounting, and abdominal bending in males, although its activity was considerably lower than the extract of female elytra when treated on a gelatin capsule as an artificial female model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-08
    Description: Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horie, Masayuki -- Honda, Tomoyuki -- Suzuki, Yoshiyuki -- Kobayashi, Yuki -- Daito, Takuji -- Oshida, Tatsuo -- Ikuta, Kazuyoshi -- Jern, Patric -- Gojobori, Takashi -- Coffin, John M -- Tomonaga, Keizo -- R37 CA 089441/CA/NCI NIH HHS/ -- R37 CA089441/CA/NCI NIH HHS/ -- R37 CA089441-09/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):84-7. doi: 10.1038/nature08695.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Borna disease virus/genetics/physiology ; Bornaviridae/*genetics/physiology ; Cell Line ; Conserved Sequence/genetics ; Evolution, Molecular ; Genes, Viral/*genetics ; Genome/*genetics ; Host-Pathogen Interactions/genetics ; Humans ; Mammals/*genetics/*virology ; Models, Genetic ; Molecular Sequence Data ; Open Reading Frames/genetics ; Phylogeny ; Reverse Transcription ; Time Factors ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-06
    Description: CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted T(reg) cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor-beta and affected Foxp3(+) T(reg) number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atarashi, Koji -- Tanoue, Takeshi -- Shima, Tatsuichiro -- Imaoka, Akemi -- Kuwahara, Tomomi -- Momose, Yoshika -- Cheng, Genhong -- Yamasaki, Sho -- Saito, Takashi -- Ohba, Yusuke -- Taniguchi, Tadatsugu -- Takeda, Kiyoshi -- Hori, Shohei -- Ivanov, Ivaylo I -- Umesaki, Yoshinori -- Itoh, Kikuji -- Honda, Kenya -- R00 DK085329/DK/NIDDK NIH HHS/ -- R01 AI052359/AI/NIAID NIH HHS/ -- R01 AI056154/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):337-41. doi: 10.1126/science.1198469. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205640" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cecum/microbiology ; Cells, Cultured ; Clostridium/growth & development/*immunology ; Colitis/immunology/pathology/prevention & control ; Colon/*immunology/metabolism/*microbiology ; Feces/microbiology ; Forkhead Transcription Factors/metabolism ; Germ-Free Life ; Immunity, Innate ; Immunoglobulin E/biosynthesis ; Interleukin-10/immunology/metabolism ; Intestinal Mucosa/*immunology/metabolism ; Intestine, Small/immunology ; Metagenome ; Mice ; Mice, Inbred A ; Mice, Inbred BALB C ; Receptors, Pattern Recognition/physiology ; Specific Pathogen-Free Organisms ; T-Lymphocytes, Helper-Inducer/immunology ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-15
    Description: Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furusawa, Yukihiro -- Obata, Yuuki -- Fukuda, Shinji -- Endo, Takaho A -- Nakato, Gaku -- Takahashi, Daisuke -- Nakanishi, Yumiko -- Uetake, Chikako -- Kato, Keiko -- Kato, Tamotsu -- Takahashi, Masumi -- Fukuda, Noriko N -- Murakami, Shinnosuke -- Miyauchi, Eiji -- Hino, Shingo -- Atarashi, Koji -- Onawa, Satoshi -- Fujimura, Yumiko -- Lockett, Trevor -- Clarke, Julie M -- Topping, David L -- Tomita, Masaru -- Hori, Shohei -- Ohara, Osamu -- Morita, Tatsuya -- Koseki, Haruhiko -- Kikuchi, Jun -- Honda, Kenya -- Hase, Koji -- Ohno, Hiroshi -- England -- Nature. 2013 Dec 19;504(7480):446-50. doi: 10.1038/nature12721. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [4]. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan [3]. ; RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan. ; Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Preventative Health National Research Flagship, CSIRO Food and Nutritional Sciences, South Australia 5000, Australia. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan [3] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan. ; 1] Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan [2] RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; 1] RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa 230-0045, Japan [2] The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan [3] PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226770" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Adoptive Transfer ; Animals ; Butyrates/analysis/*metabolism/pharmacology ; *Cell Differentiation/drug effects ; Colitis/drug therapy/pathology ; Colon/cytology/*immunology/metabolism/*microbiology ; Conserved Sequence ; Female ; *Fermentation ; Forkhead Transcription Factors/genetics ; Germ-Free Life ; Histones/metabolism ; Homeostasis/drug effects ; Intestinal Mucosa/cytology/immunology ; Lymphocyte Count ; Magnetic Resonance Spectroscopy ; Male ; Metabolome ; Mice ; Promoter Regions, Genetic/drug effects ; *Symbiosis ; T-Lymphocytes, Regulatory/*cytology/drug effects/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-28
    Description: Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA-SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshimoto, Shin -- Loo, Tze Mun -- Atarashi, Koji -- Kanda, Hiroaki -- Sato, Seidai -- Oyadomari, Seiichi -- Iwakura, Yoichiro -- Oshima, Kenshiro -- Morita, Hidetoshi -- Hattori, Masahira -- Honda, Kenya -- Ishikawa, Yuichi -- Hara, Eiji -- Ohtani, Naoko -- England -- Nature. 2013 Jul 4;499(7456):97-101. doi: 10.1038/nature12347. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bacteria/metabolism ; Bile Acids and Salts/metabolism ; Carcinoma, Hepatocellular/complications/etiology/metabolism/prevention & control ; *Cell Aging/drug effects ; Cells, Cultured ; Cytokines/metabolism/secretion ; DNA Damage/drug effects ; Deoxycholic Acid/blood/*metabolism ; Dietary Fats/adverse effects/pharmacology ; Disease Models, Animal ; Fatty Liver/complications/pathology ; Gastrointestinal Tract/drug effects/*metabolism/*microbiology ; Hepatic Stellate Cells/cytology/drug effects/metabolism/*secretion ; Humans ; Interleukin-1beta/deficiency ; Liver Neoplasms/complications/etiology/*metabolism/prevention & control ; Male ; Mice ; Mice, Inbred C57BL ; Non-alcoholic Fatty Liver Disease ; Obesity/chemically induced/*metabolism ; Phenotype ; Risk Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-12
    Description: Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4(+)FOXP3(+) regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules--including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)--in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-beta-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atarashi, Koji -- Tanoue, Takeshi -- Oshima, Kenshiro -- Suda, Wataru -- Nagano, Yuji -- Nishikawa, Hiroyoshi -- Fukuda, Shinji -- Saito, Takuro -- Narushima, Seiko -- Hase, Koji -- Kim, Sangwan -- Fritz, Joelle V -- Wilmes, Paul -- Ueha, Satoshi -- Matsushima, Kouji -- Ohno, Hiroshi -- Olle, Bernat -- Sakaguchi, Shimon -- Taniguchi, Tadatsugu -- Morita, Hidetoshi -- Hattori, Masahira -- Honda, Kenya -- England -- Nature. 2013 Aug 8;500(7461):232-6. doi: 10.1038/nature12331. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842501" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Proliferation ; Clostridium/classification/genetics/*immunology ; Colitis/microbiology/pathology ; Colon/immunology/microbiology ; Disease Models, Animal ; Feces/microbiology ; Germ-Free Life ; Humans ; Inducible T-Cell Co-Stimulator Protein/metabolism ; Interleukin-10/metabolism ; Male ; Metagenome/genetics/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, SCID ; RNA, Ribosomal, 16S/genetics ; Rats ; Rats, Inbred F344 ; T-Lymphocytes, Regulatory/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-15
    Description: Changes to the symbiotic microbiota early in life, or the absence of it, can lead to exacerbated type 2 immunity and allergic inflammations. Although it is unclear how the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory T helper 17 (T(H)17) cells and regulatory T cells (T(regs)) in the intestine. Here, we report that microbiota-induced T(regs) express the nuclear hormone receptor RORgammat and differentiate along a pathway that also leads to T(H)17 cells. In the absence of RORgammat(+) T(regs), T(H)2-driven defense against helminths is more efficient, whereas T(H)2-associated pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the induction of type 3 RORgammat(+) T(regs) and T(H)17 cells and acts as a key factor in balancing immune responses at mucosal surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohnmacht, Caspar -- Park, Joo-Hong -- Cording, Sascha -- Wing, James B -- Atarashi, Koji -- Obata, Yuuki -- Gaboriau-Routhiau, Valerie -- Marques, Rute -- Dulauroy, Sophie -- Fedoseeva, Maria -- Busslinger, Meinrad -- Cerf-Bensussan, Nadine -- Boneca, Ivo G -- Voehringer, David -- Hase, Koji -- Honda, Kenya -- Sakaguchi, Shimon -- Eberl, Gerard -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):989-93. doi: 10.1126/science.aac4263. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France. ; Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ; RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan. PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; INSERM, U1163, Laboratory of Intestinal Immunity, Paris, France. Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, Paris, France. INRA Micalis UMR1319, Jouy-en-Josas, France. ; Center of Allergy and Environment (ZAUM), Technische Universitat and Helmholtz Zentrum Munchen, Munich, Germany. ; Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria. ; INSERM, U1163, Laboratory of Intestinal Immunity, Paris, France. Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, Paris, France. ; Institut Pasteur, Biology and Genetics of Bacterial Cell Wall, 75724 Paris, France. INSERM, Groupe Avenir, 75015 Paris, France. ; Department of Infection Biology at the Institute of Clinical Microbiology, Immunology and Hygiene, University Clinic Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany. ; RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan. CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan. ; Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. ; Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France. gerard.eberl@pasteur.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Colitis, Ulcerative/immunology ; Colon/immunology/microbiology ; Germ-Free Life ; Homeostasis ; *Immunity, Mucosal ; Intestinal Mucosa/*immunology/*microbiology ; Intestine, Small/immunology/microbiology ; Intestines/immunology/*microbiology ; Mice ; Microbiota/*immunology ; Models, Immunological ; Nematospiroides dubius ; Nuclear Receptor Subfamily 1, Group F, Member 3/*metabolism ; Specific Pathogen-Free Organisms ; Strongylida Infections/immunology ; T-Lymphocyte Subsets/immunology ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Th17 Cells/immunology ; Th2 Cells/immunology ; Vitamin A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...