ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Other Sources
  • emf  (2)
  • Apparent molal volumes  (1)
  • EMLR  (1)
  • 2015-2019  (1)
  • 2010-2014
  • 2000-2004  (3)
  • 1
    ISSN: 1572-8927
    Keywords: samarium chloride: activity coefficients ; Nernst equation ; Harned's rule ; emf ; Pitzer equations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A comprehensive array of electrochemical cell measurements for the system HCl +SmCl3 + H2O was made from 5 to 55°C using a cell without liquid junction ofthe type:Pt; H2(g, 1 atm)|HCl (m A) + SmCl3 (m B)|AgCl, Ag (A)The present study, unlike previous studies of trivalent ions, are not complicatedby hydrolysis reactions. Measurements of the emf were performed for solutionsat constant total ionic strengths of 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5,and 3.0 mol-kg−1. The mean activity coefficients of HCl (γHCl) in the mixtureswere calculated using the Nernst equation. All the experimental emf measurements(about 850) were first treated in terms of the simpler Harned's rule. Harnedinteraction coefficients (αAB and βAB) were calculated. The linear form of Harned'srule is valid for most ionic strengths, but quadratic terms are needed at I = 1.5and 3 mol-kg−1. The Pitzer model was used to evaluate the activity coefficientsusing literature values, β(0), β(1), and C φ, for HCl from 0 to 50°C and 25°C forSmCl3. The effect of temperature on the parameters for SmCl3 has been estimatedusing enthalpy and heat-capacity data. The mixing parameter ΘH,Sm wasdetermined at 25°C. The addition of the ΨH,Sm,Cl coefficient did not improve the fitsignificantly and no temperature dependence was found to be significant. Thevalue of ΘH,Sm = 0.2 ± 0.01 represented the values of γHCl with a standarddeviation of σ = 0.009 over the entire range of temperatures and ionic strength.The use of higher-order electrostatic effects (EΘH,Sm, EΘH,Sm) was included as itgave a better fit of the activity coefficients of HCl.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8927
    Keywords: Hydrochloric acid ; gadolinium chloride ; emf ; Harned's rule ; Pitzer equations ; activity coefficients ; mixtures of electrolytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The emf of the cell $${\text{Pt, H}}_{\text{2}} ({\text{g, 1 atm}})|{\text{HCI(}}m_{\text{A}} {\text{),GdCl}}_{\text{3}} (m_B )|{\text{AgCl, Ag}}$$ without a liquid junction was used to investigate the HCl + GdCl3 + H2O mixedelectrolyte system. The emf of the cell was measured for HCl + GdCl3 + H2Osolutions at ionic strengths of 0.025, 0.05, 0.1, 0.5, 1.0, 1.5, and 2.0 mol-kg−1and at eleven temperatures ranging from 5 to 55°C at 5°C intervals. The meanactivity coefficients for HCl in the mixtures were determined using the Nernstequation. About 793 experimental emf data points were treated by the Harnedequations. Results show that hydrochloric acid follows Harned's rule at all ionicstrengths, but the quadratic term is needed for I = 1.5 mol-kg−1. Theion-interaction treatment of Pitzer was used to evaluate the results. The binary andternary mixing parameters at 25°C were found to be ΘH,Gd = 0.07 ± 0.03 andΨH,Gd,Cl = 0.14 ± 0.03. These values were determined using literature values ofβ(0), β(1), and C ψ for GdCl3 at 25°C and estimates of the effect of temperaturefrom 5 to 55°C using enthalpy and heat capacity data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 29 (2000), S. 719-742 
    ISSN: 1572-8927
    Keywords: Apparent molal volumes ; apparent molar compressibilities ; sea water ; Pitzer equations ; sea salts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The density and compressibility of seawater salt solutions for ionic strengths 0to 0.8 m, temperatures 0–40°C, and applied pressure 0 to 1000 barare fitted tothe Pitzer equations. The apparent molal volumes and compressibilities (Xφ) arefitted to equations of the form $$X_\phi = \mathop {X^0 }\limits^ + A_X I/(1.2m)\ln (1 + 1.2I^{0.5} ) + 2 RT m(\beta ^{(0)X} + \beta ^{(1)X} g(y) + m C^X )$$ where I is the ionic strength, m is the molality of seasalt, A X is the Debye—Hückelslope for the volume (X = V) or compressibility(X = κ) and g(y) = (2/y 2)[1 − (1 + y)exp(x)] where y = 2I 0.5. The Pitzer parameters β(0)X,β(1)X, and C Xare fitted to functions of temperature and pressure in the form $$Y^{\text{x}} = \Sigma _{\text{i}} \Sigma _{\text{j}} a_{{\text{ij}}} (T - T_{\text{R}} )^{\text{i}} P^{\text{j}} $$ where a ij are adjustable parameters, Y X is the Pitzer parameter, T is the temperaturein K, T R = 298.15 K, and P is the applied pressure in bars (P = 0 at 1 atm or1.013 bar). The standard deviations of the seawater fits are 8.3×10−6 cm3-g−1for the specific volumes, 0.0007×10−6 bar−1 for the compressibilities, and0.63×10−6 K−1 for the thermal expansibilities. At 25°C, the measured densitiesof seawater are compared to the calculated values using Pitzer coefficients forthe major sea salts. The results agree with the measured values to within 45×10−6g-cm−3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E., Pardo, P. C., Sabine, C. L., Johnson, G. C., Sloyan, B. M., Murata, A., Mecking, S., Tilbrook, B., Speer, K., Talley, L. D., Millero, F. J., Wijffels, S. E., Macdonald, A. M., Gruber, N., & Bullister, J. L. Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochemical Cycles, 33(5), (2019):597-617, doi:10.1029/2018GB006154.
    Description: We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between 1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few decades, with most sections having been recently measured as part of the Global Ocean Ship‐based Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that combines the extended multiple linear regression method with improvements to address the challenges of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of hydrographic data and that a continuation of repeated surveys is a critical component of future carbon cycle monitoring.
    Description: The data we use can be accessed at CCHDO website (https://cchdo.ucsd.edu/) and GLODAP website (https://www.glodap.info/). This research would not be possible without the hard work of the scientists and crew aboard the many repeated hydrographic cruises coordinated by GO‐SHIP, which is funded by NSF OCE and NOAA OAR. We thank funding agencies and program managers as follows: U.S., Australian, Japanese national science funding agencies that support data collection, data QA/QC, and data centers. Contributions from B. R. C., R. A. F., and R. W. are supported by the National Oceanic and Atmospheric Administration Global Ocean Monitoring and Observing Program (Data Management and Synthesis Grant: N8R3CEA‐PDM managed by Kathy Tedesco and David Legler). G. C. J. is supported by the Climate Observation Division, Climate Program Office, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research (fund reference 100007298), grant (N8R1SE3‐PGC). B. M. S was supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. N. G. acknowledges support by ETH Zurich. This is JISAO contribution 2018‐0149 and PMEL contribution 4786. We fondly remember John Bullister as a treasured friend, valued colleague, and dedicated mentor, and we thank him for sharing his days with us. He is and will be dearly missed.
    Keywords: Anthropogenic carbon ; Pacific ; Decadal variability ; EMLR ; Ocean acidification ; Repeat hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...