Skip to main content
Log in

Thermodynamics of the System HCl + SmCl3 + H2O from 5 to 55°C. Application of Harned's Rule and the Pitzer Formalism

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive array of electrochemical cell measurements for the system HCl +SmCl3 + H2O was made from 5 to 55°C using a cell without liquid junction ofthe type:Pt; H2(g, 1 atm)|HCl (m A) + SmCl3 (m B)|AgCl, Ag (A)The present study, unlike previous studies of trivalent ions, are not complicatedby hydrolysis reactions. Measurements of the emf were performed for solutionsat constant total ionic strengths of 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5,and 3.0 mol-kg−1. The mean activity coefficients of HCl (γHCl) in the mixtureswere calculated using the Nernst equation. All the experimental emf measurements(about 850) were first treated in terms of the simpler Harned's rule. Harnedinteraction coefficients (αAB and βAB) were calculated. The linear form of Harned'srule is valid for most ionic strengths, but quadratic terms are needed at I = 1.5and 3 mol-kg−1. The Pitzer model was used to evaluate the activity coefficientsusing literature values, β(0), β(1), and C φ, for HCl from 0 to 50°C and 25°C forSmCl3. The effect of temperature on the parameters for SmCl3 has been estimatedusing enthalpy and heat-capacity data. The mixing parameter ΘH,Sm wasdetermined at 25°C. The addition of the ΨH,Sm,Cl coefficient did not improve the fitsignificantly and no temperature dependence was found to be significant. Thevalue of ΘH,Sm = 0.2 ± 0.01 represented the values of γHCl with a standarddeviation of σ = 0.009 over the entire range of temperatures and ionic strength.The use of higher-order electrostatic effects (EΘH,Sm, EΘH,Sm) was included as itgave a better fit of the activity coefficients of HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Robinson, R. N. Roy, and R. G. Bates, J. Solution Chem. 3, 837 (1974).

    Google Scholar 

  2. R. N. Roy, J. J. Gibbons, L. K. Ovens, G. A. Bliss, and J. J. Hartley, J. Chem. Soc. Farad. Trans. I 78, 1405 (1981).

    Google Scholar 

  3. K. H. Khoo, C. Y. Chan, and T. K. Lim, J. Solution Chem. 6, 855 (1977).

    Google Scholar 

  4. J. B. Macaskill and R. G. Bates, J. Solution Chem. 6, 855 (1977).

    Google Scholar 

  5. K. H. Khoo, T. K. Lim, and C. Y. Chan, J. Solution Chem. 10, 683 (1981).

    Google Scholar 

  6. R. N. Roy, J. J. Gibbons, J. C. Peiper, and K. S. Pitzer, J. Phys. Chem. 87, 2365 (1983).

    Google Scholar 

  7. K. S. Pitzer, J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  8. R. N. Roy, L. N. Roy, D. R. Gregory, S. Kiefer, B. Das, and K. S. Pitzer, J. Solution Chem. 28, 933 (1999).

    Google Scholar 

  9. L. N. Roy, T. M. Beasley, K. M. Kuhler, J. K. Rice, W. S. Good, R. N. Roy, and K. S. Pitzer, J. Solution Chem. 25, 1241 (1996).

    Google Scholar 

  10. K. S. Pitzer, R. N. Roy, and P. Wang, Intern. J. Thermophys. 19, 731 (1998).

    Google Scholar 

  11. F. H. Spedding, H. O. Weber, V. W. Saeger, H. H. Petheram, J. A. Rard, and A. J. Habenshuss, J. Chem. Eng. Data 21, 341 (1978).

    Google Scholar 

  12. J. A. Rard, H. O. Weber, and F. H. Spedding, J. Chem. Eng. Data 22, 187 (1977).

    Google Scholar 

  13. R. G. Bates, Determination of pH, Theory and Practice, 2nd edn. (Wiley, New York, 1973), p. 33.

    Google Scholar 

  14. R. N. Roy, L. N. Roy, G. D. Farwell, K. A. Smith, and F. J. Millero, J. Phys. Chem. 94, 7321 (1990).

    Google Scholar 

  15. R. G. Bates, Standard Methods of Chemical Analysis, 6th edn., Vol. IIIA (Krieger Publishing, Melbourne, Fl., 1966), Chap. 26.

    Google Scholar 

  16. R. G. Bates, E. A. Guggenheim, H. S. Harned, D. J. G. Ives, D. Janz, C. B. Monk, J. E. Prue, R. A. Robinson, R. H. Stokes, and W. F. K. Wynne-Jones, J. Chem. Phys. 25, 361 (1956); J. Chem. Phys. 26, 222 (1957).

    Google Scholar 

  17. H. S. Harned and R. A. Robinson, Multicomponent Electrolyte Solutions, (Pergamon, Oxford, 1968), p. 60.

    Google Scholar 

  18. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Chap. 14 (Reinhold, New York, 1958), p. 716.

    Google Scholar 

  19. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edn. (Butterworths, London, 1970), p. 438.

    Google Scholar 

  20. H. L. Friedman, Ionic Solution Theory (Interscience, New York, 1962).

    Google Scholar 

  21. G. Scatchard, J. Amer. Chem. Soc. 82, 3636 (1961).

    Google Scholar 

  22. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  23. K. S. Pitzer and J. J. Kim, J. Amer. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  24. K. S. Pitzer, R. N. Roy, and P. Wang, J. Phys. Chem. 101, 4120 (1997).

    Google Scholar 

  25. J. Ananthaswamy and G. Atkinson, J. Chem. Eng. Data 29, 81 (1984).

    Google Scholar 

  26. D. J. Bradley and K. S. Pitzer. J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  27. R. N. Roy, L. N. Roy, D. R. Gregory, A. J. VanLanduyt, D. Pierrot, and F. J. Millero, submitted.

  28. K. S. Pitzer, J. R. Peterson, and L. F. Silvester, J. Solution Chem. 7, 45 (1978).

    Google Scholar 

  29. D. M. Campbell, F. J. Millero, R. N. Roy, L. Roy, M. Lawson, K. Vogel, and C. P. Moore, Mar. Chem. 44, 221 (1993).

    Google Scholar 

  30. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd Edn., Vol. I (CRC Press, Boca Raton, Florida 1991), pp. 75-153.

    Google Scholar 

  31. C. M. Criss and F. J. Millero, J. Solution Chem. 28, 848 (1999).

    Google Scholar 

  32. C. M. Criss and F. J. Millero, J. Phys. Chem. 100, 1288 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R.N., Roy, L.N., Gregory, D.R. et al. Thermodynamics of the System HCl + SmCl3 + H2O from 5 to 55°C. Application of Harned's Rule and the Pitzer Formalism. Journal of Solution Chemistry 29, 1211–1227 (2000). https://doi.org/10.1023/A:1026484112080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026484112080

Navigation