ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Highlights • Six combined 231Pa/230Th and εNdεNd down-core profiles back to 25 ka are presented. • Increased influence of SCW and northward advection of deep waters during LGM/HS1. • Evidence for an active but shallower northern overturning cell during LGM/HS1. Abstract Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (εNdεNd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and εNdεNd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ∼25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (〉3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GeoForschungsZentrum Potsdam
    In:  In: Klimaweißbuch : Klimainformationen aus geowissenschaftlicher Forschung (Fallstudien) ; Stand und notwendige Erfordernisse der Paläoklimaforschung. , ed. by Negendank, J. F. W. Terra Nostra (2001,7). GeoForschungsZentrum Potsdam, Potsdam, pp. 71-77.
    Publication Date: 2014-07-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-25
    Description: Oxygen isotope values of the extant Caribbean coralline sponge Ceratoporella nicholsoni are compared with published temperatures and δ18O of water calculated from salinities. The measured values from aragonitic sponge skeletons have a mean offset of 1.0 ± 0.1‰ from calculated calcite equilibrium values (αaragonite-calcite = 1.0010). This is in good agreement with published values from synthetic aragonite. They further agree with published near-equilibrium oxygen isotope values of temperate and cold water molluscs and foraminifera extrapolated to the temperature range of the coralline sponges. These results and the mode of skeleton formation of Ceratoporella nicholsoni suggest that these sponges precipitate aragonite close to isotopic equilibrium. The temperature dependence of oxygen isotopic fractionation between the aragonite of Ceratoporella nicholsoni and water is only roughly constrained by the available data, due to the narrow temperature range of the Caribbean reef sites. However, as the data suggest oxygen isotopic equilibrium, we can calculate a well constrained temperature equation combining temperate and cold water equilibrium values from molluscs and foraminifera with our sponge data: Full-size image (〈1 K) and Full-size image (〈1 K).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Conflicting results have been reported for the stable Sr isotope fractionation, specifically with respect to the influence of temperature. In an experimental study we have investigated the stable Sr isotope systematics for inorganically precipitated and biogenic (coral) aragonite (natural and laboratory-cultured). Inorganic aragonite precipitation experiments were performed from natural seawater using the CO2 diffusion technique. The experiments were performed at different temperatures and different carbonate ion concentrations. 88Sr/86Sr of the inorganic aragonite precipitated in the experiments are 0.2‰ lighter than seawater, but showed no correlation to the water temperature or to CO32− concentration. Similar observations are made in different coral species (Cladocora caespitosa, Porites sp. and Acropora sp.), with identical fractionation from the bulk solution and no correlation to temperature or CO32− concentration. The lack of 88Sr/86Sr variability in corals at different environmental parameters and the similarity to the 88Sr/86Sr fractionation in inorganic aragonite may indicate a similar Sr incorporation mechanism in corals skeleton and inorganic aragonite, and therefore the previously proposed Rayleigh-based multi element model (Gaetani et al., 2011) cannot explain the process of Sr incorporation in the coral skeletal material. It is proposed that the relatively constant 88Sr/86Sr fractionation in aragonite can be used for paleo reconstruction of seawater 88Sr/86Sr composition. The seawater 88Sr/86Sr ratio reconstruction can be further used in calcite samples to reconstruct paleo precipitation rates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-07
    Description: The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the δ44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of δ44/40Ca ranges from 0.6 to 0.1‰, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and δ44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by δ18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's δ44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean. Highlights ► Corals cultured in aquaria or from natural environment show the same Ca isotopic composition. ► δ44/40Ca of coral skeleton is independent of depositional setting environment. ► Strong influence of vital effects on coral skeleton δ44/40Ca composition and calcification mechanisms
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-24
    Description: We present strontium (Sr) isotope ratios that, unlike traditional 87Sr/86Sr data, are not normalized to a fixed 88Sr/86Sr ratio of 8.375209 (defined as δ88/86Sr = 0 relative to NIST SRM 987). Instead, we correct for isotope fractionation during mass spectrometry with a 87Sr–84Sr double spike. This technique yields two independent ratios for 87Sr/86Sr and 88Sr/86Sr that are reported as (87Sr/86Sr*) and (δ88/86Sr), respectively. The difference between the traditional radiogenic (87Sr/86Sr normalized to 88Sr/86Sr = 8.375209) and the new 87Sr/86Sr* values reflect natural mass-dependent isotope fractionation. In order to constrain glacial/interglacial changes in the marine Sr budget we compare the isotope composition of modern seawater ((87Sr/86Sr*, δ88/86Sr)Seawater) and modern marine biogenic carbonates ((87Sr/86Sr*, δ88/86Sr)Carbonates) with the corresponding values of river waters ((87Sr/86Sr*, δ88/86Sr)River) and hydrothermal solutions ((87Sr/86Sr*, δ88/86Sr)HydEnd) in a triple isotope plot. The measured (87Sr/86Sr*, δ88/86Sr)River values of selected rivers that together account for not, vert, similar18% of the global Sr discharge yield a Sr flux-weighted mean of (0.7114(8), 0.315(8)‰). The average (87Sr/86Sr*, δ88/86Sr)HydEnd values for hydrothermal solutions from the Atlantic Ocean are (0.7045(5), 0.27(3)‰). In contrast, the (87Sr/86Sr*, δ88/86Sr)Carbonates values representing the marine Sr output are (0.70926(2), 0.21(2)‰). We estimate the modern Sr isotope composition of the sources at (0.7106(8), 0.310(8)‰). The difference between the estimated (87Sr/86Sr*, δ88/86Sr)input and (87Sr/86Sr*, δ88/86Sr)output values reflects isotope disequilibrium with respect to Sr inputs and outputs. In contrast to the modern ocean, isotope equilibrium between inputs and outputs during the last glacial maximum (10–30 ka before present) can be explained by invoking three times higher Sr inputs from a uniquely “glacial” source: weathering of shelf carbonates exposed at low sea levels. Our data are also consistent with the “weathering peak” hypothesis that invokes enhanced Sr inputs resulting from weathering of post-glacial exposure of abundant fine-grained material.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-26
    Description: In order to apply Sr/Ca and 44Ca/40Ca fractionation during calcium carbonate (CaCO3) formation as a proxy to reconstruct paleo-environments, it is essential to evaluate the impact of various environmental factors. In this study, a CO2 diffusion technique was used to crystallize inorganic calcite from aqueous solutions at different ionic strength/salinity by the addition of NaCl at 25 °C. Results show that the discrimination of Sr2+ versus Ca2+ during calcite formation is mainly controlled by precipitation rate (R in μmol/m2/h) and is weakly influenced by ionic strength/salinity. In analogy to Sr incorporation, 44Ca/40Ca fractionation during precipitation of calcite is weakly influenced by ionic strength/salinity too. At 25 °C the calcium isotope fractionation between calcite and aqueous calcium ions (Δ44/40Cacalcite-aq = δ44/40Cacalcite − δ44/40Caaq) correlates inversely to log R values for all experiments. In addition, an inverse relationship between Δ44/40Cacalcite-aq and log DSr, which is independent of temperature, precipitation rate, and aqueous (Sr/Ca)aq ratio, is not affected by ionic strength/salinity either. Considering the log DSr and Δ44/40Cacalcite-aq relationship, Sr/Ca and δ44/40Cacalcite values of precipitated calcite can be used as an excellent multi-proxy approach to reconstruct environmental conditions (e.g., temperature, precipitation rate) of calcite growth and diagenetic alteration.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Chemical (Sr, Mg) and isotopic (δ18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from 10 basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement 〈46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater–basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46–6.22 mmol/mol) and Mg/Ca (1.12–2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca–Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-16
    Description: We have investigated the strontium isotope fractionation (Δ88/86Srcarb–aq) between inorganic calcite and aqueous Sr2+ ions by precipitation experiments at a constant temperature of 25 °C and precipitation rates (R) ranging from 102.3 to 104.2 μmol/m2/h. Strontium isotope ratios were measured using the 87Sr–84Sr double spike technique. It was found that strontium isotope fractionation in these calcites is strongly dependent on the precipitation rate: View the MathML source The measured δ88/86Sr values are significantly correlated with previously measured δ44/40Ca and Sr/Ca values of the same calcite samples: Δ88/86Srcarb–aq=+0.18∗Δ44/40Cacarb–aq-0.01 View the MathML source The slope of 88Sr/86Sr versus 44Ca/40Ca fractionation is 0.18 ± 0.04 and compatible with a kinetic fractionation during dehydration of the strontium and calcium ions, but not with isotope fractionation in a diffusive boundary layer. Using published equilibrium Δ44/40Cacarb–aq and View the MathML source values we estimate the equilibrium isotope fractionation of strontium to be very close to zero (Δ88/86Sreq(carb–aq) = −0.01 ± 0.06‰). This estimate is confirmed by strontium isotope values of natural inorganic calcites that precipitated very slowly in basalts of the ocean crust. The results from the inorganic calcites are used to explain strontium isotope fractionation of planktic foraminifera. Specimens of two warm water species (Globigerinoides ruber and Globigerinoides sacculifer) were picked from the Holocene section of a Caribbean sediment core. We found no significant difference in δ88/86Sr between the two species. In addition, G. ruber specimens from Marine Isotope Stage 2 in the same core show δ88/86Sr values identical to the Holocene specimens. The strontium isotopes of both foraminifera species are strongly fractionated (Δ88/86Srcarb–aq = −0.248 ± 0.005‰) when compared to published data of other major marine calcifiers. Applying the results from the inorganic precipitation experiments we find that the strong foraminiferal strontium isotope fractionation can be explained by calcification in a largely open system at high precipitation rates, comparable in magnitude to rates known from scleractinian reef corals. This interpretation is in good agreement with the kinetic calcification model for planktic foraminifera by Kisakürek et al. (2011), which was based on calcium isotopes and elemental Sr/Ca ratios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...