ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Public Library of Science (PLoS)
    In:  EPIC3PLOS ONE, Public Library of Science (PLoS), 18(8), pp. e0290437-e0290437, ISSN: 1932-6203
    Publication Date: 2023-08-31
    Description: Due to its involvement in numerous feedbacks, sea ice plays a crucial role not only for polar climate but also at global scale. We analyse state-of-the-art observed, reconstructed, and modelled sea-ice concentration (SIC) together with sea surface temperature (SST) to disentangle the influence of different forcing factors on the variability of these coupled fields. Canonical Correlation Analysis provides distinct pairs of coupled Arctic SIC–Atlantic SST variability which are linked to prominent oceanic and atmospheric modes of variability over the period 1854–2017. The first pair captures the behaviour of the Atlantic meridional overturning circulation (AMOC) while the third and can be associated with the North Atlantic Oscillation (NAO) in a physically consistent manner. The dominant global SIC–Atlantic SST coupled mode highlights the contrast between the responses of Arctic and Antarctic sea ice to changes in AMOC over the 1959–2021 period. Model results indicate that coupled SST–SIC patterns can be associated with changes in ocean circulation. We conclude that a correct representation of AMOC-induced coupled SST–SIC variability in climate models is essential to understand the past, present and future sea-ice evolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-15
    Description: Clouds are notoriously difficult to simulate. Here, we separate and quantify the impact of Pacific climate modes on total cloud cover (TCC) variability, using reliable satellite observations together with state-of-the art reanalysis outputs, over the 1979–2020 period. The two most prominent modes of annual TCC variability show intense loadings over the Pacific basin and explain most of the variance in what could be considered the “signal” in satellite TCC data. Canonical correlation analysis (CCA) provides coupled TCC—sea surface temperature (SST) patterns that are linked to the Eastern Pacific (EP) ElNiño—Southern Oscillation (ENSO) and the Central Pacific (CP) ENSO in a physically consistent manner. The two ENSO modes dominate global coupled SST–TCC variability with the footprint of the CP ENSO explaining roughly half of the variance induced by the EP ENSO among these coupled fields. Both the EP and the CP ENSO exert an influence on Pacific decadal TCC variability. The impact of both ENSO modes on global total cloud cover variability is amplified by two positive feedbacks. These results could be used as a reference for model investigations on future projections of coupled TCC—SST variability responses to the CP and the EP ENSO.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...