ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (14)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Fe-binding ligands associated with primary productivity together with ligands from the Arctic Ocean are the main sources of Fe-binding ligands in surface waters of Fram Strait. • Fe-binding ligands are present in a high concentrations in front of the glacier terminus, but the ligands have a relatively low binding capacity, thus less reactive. • Low binding strength coupled with low competing strength of ligands result in a higher inorganic Fe concentration, causing Fe to precipitate or scavenged. Abstract There is a paucity of data on Fe-binding ligands in the Arctic Ocean. Here we investigate the distribution and chemical properties of natural Fe-binding ligands in Fram Strait and over the northeast Greenland shelf, shedding light on their potential sources and transport. Our results indicate that the main sources of organic ligands to surface waters of Fram Strait included primary productivity and supply from the Arctic Ocean. We calculated the mean total Fe-binding ligand concentration, [Lt], in Polar Surface Water from the western Fram Strait to be 1.65 ± 0.4 nM eq. Fe. This value is in between reported values for the Arctic and North Atlantic Oceans, confirming reports of north to south decreases in [Lt] from the Arctic Ocean. The differences between ligand sources in different biogeochemical provinces, resulted in distinctive ligand properties and distributions that are reflected in [Lt], binding strength (log KFe'L′) and competing strength (log αFe'L) of ligands. Higher [Lt] was present near the Nioghalvfjerdsfjorden (79 N) Glacier terminus and in the Westwind Trough (median of [Lt] = 2.17 nM eq. Fe; log KFe'L′ = 12.3; log αFe'L = 3.4) than in the Norske Trough (median of [Lt] = 1.89 nM eq. Fe; log KFe'L′= 12.8; log αFe'L = 3.8) and in Fram Strait (median of [Lt] = 1.38 nM eq. Fe; log KFe'L′ = 13; log αFe'L= 3.9). However, organic ligands near the 79 N Glacier terminus and in the Westwind Trough were weaker, and therefore less reactive than organic ligands in the Norske Trough and in Fram Strait. Our findings reveal the fundamental mechanism that underpin transport of dissolved-Fe (DFe) from the 79 N Glacier to Fram Strait, less reactive ligands will reduce Fe solubility. Accordingly, a portion of the glacial DFe will not be transported over the shelf into the ocean. The lower ligand binding strength in the outflow results in a higher inorganic Fe concentration, [Fe´], which is more prone to precipitation and/or scavenging than Fe complexed with stronger ligands. Ongoing changes in the Arctic and sub-Arctic Oceans will influence both terrestrially derived and in-situ produced Fe-binding ligands, and therefore will have consequences for Fe solubility and availability to microbial populations and Fe cycling in Fram Strait.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Competitive ligand exchange – adsorptive cathodic stripping voltammetry (CLE-AdCSV) is a widely used technique to determine dissolved iron (Fe) speciation in seawater, and involves competition for Fe of a known added ligand (AL) with natural organic ligands. Three different ALs were used, 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-napthol (NN). The total ligand concentrations ([L t ]) and conditional stability constants (log K ′ Fe’L ) obtained using the different ALs are compared. The comparison was done on seawater samples from Fram Strait and northeast Greenland shelf region, including the Norske Trough, Nioghalvfjerdsfjorden (79N) Glacier front and Westwind Trough. Data interpretation using a one-ligand model resulted in [L t ] SA (2.72 ± 0.99 nM eq Fe) > [L t ] TAC (1.77 ± 0.57 nM eq Fe) > [L t ] NN (1.57 ± 0.58 nM eq Fe); with the mean of log K ′ Fe’L being the highest for TAC (log ′ K Fe’L(TAC) = 12.8 ± 0.5), followed by SA (log K ′ Fe’L(SA) = 10.9 ± 0.4) and NN (log K ′ Fe’L(NN) = 10.1 ± 0.6). These differences are only partly explained by the detection windows employed, and are probably due to uncertainties propagated from the calibration and the heterogeneity of the natural organic ligands. An almost constant ratio of [L t ] TAC /[L t ] SA = 0.5 – 0.6 was obtained in samples over the shelf, potentially related to contributions of humic acid-type ligands. In contrast, in Fram Strait [L t ] TAC /[L t ] SA varied considerably from 0.6 to 1, indicating the influence of other ligand types, which seemed to be detected to a different extent by the TAC and SA methods. Our results show that even though the SA, TAC and NN methods have different detection windows, the results of the one ligand model captured a similar trend in [L t ], increasing from Fram Strait to the Norske Trough to the Westwind Trough. Application of a two-ligand model confirms a previous suggestion that in Polar Surface Water and in water masses over the shelf, two ligand groups existed, a relatively strong and relatively weak ligand group. The relatively weak ligand group contributed less to the total complexation capacity, hence it could only keep part of Fe released from the 79N Glacier in the dissolved phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is considered a source of micronutrients to the Nordic Seas and the North Atlantic Ocean through the gateway of Fram Strait. However, there is a paucity of trace element data from across the Arctic Ocean gateways, and so it remains unclear how Arctic and North Atlantic exchange shapes micronutrient availability in the two ocean basins. In 2015 and 2016, GEOTRACES cruises sampled the Barents Sea Opening (GN04, 2015) and Fram Strait (GN05, 2016) for dissolved iron (dFe), manganese (dMn), cobalt (dCo), nickel (dNi), copper (dCu) and zinc (dZn). Together with the most recent synopsis of Arctic-Atlantic volume fluxes, the observed trace element distributions suggest that Fram Strait is the most important gateway for Arctic-Atlantic dissolved micronutrient exchange as a consequence of Intermediate and Deep Water transport. Combining fluxes from Fram Strait and the Barents Sea Opening with estimates for Davis Strait (GN02, 2015) suggests an annual net southward flux of 2.7 ± 2.4 Gg·a-1 dFe, 0.3 ± 0.3 Gg·a-1 dCo, 15.0 ± 12.5 Gg·a-1 dNi and 14.2 ± 6.9 Gg·a-1 dCu from the Arctic towards the North Atlantic Ocean. Arctic-Atlantic exchange of dMn and dZn were more balanced, with a net southbound flux of 2.8 ± 4.7 Gg·a-1 dMn and a net northbound flux of 3.0 ± 7.3 Gg·a-1 dZn. Our results suggest that ongoing changes to shelf inputs and sea ice dynamics in the Arctic, especially in Siberian shelf regions, affect micronutrient availability in Fram Strait and the high latitude North Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Hydrothermal vents are a source of many trace metals to the oceans. Compared to mid-ocean ridges, hydrothermal vent systems at arcs occur in shallower water depth and are much more diverse in fluid composition, resulting in highly variable water column trace metal concentrations. However, only few studies have focused on trace metal dynamics in hydrothermal plumes at volcanic arcs. During R/V Sonne cruise SO253 in 2016/2017, hydrothermal plumes from two hydrothermally active submarine volcanoes along the Kermadec arc in the Southwest Pacific Ocean were sampled: (1) Macauley, a magmatic dominated vent site located in water depths between 300 and 680 m, and (2) Brothers, located between 1,200 and 1,600 m water depth, where hydrothermalism influenced by water rock interactions and magmatically influenced vent sites occur near each other. Surface currents estimated from satellite-altimeter derived currents and direct measurements at the sites using lowered acoustic Doppler current profilers indicate the oceanic regime is dominated by mesoscale eddies. At both volcanoes, results indicated strong plumes of dissolved trace metals, notably Mn, Fe, Co, Ni, Cu, Zn, Cd, La, and Pb, some of which are essential micronutrients. Dissolved metal concentrations commonly decreased with distance from the vents, as to be expected, however, certain element/Fe ratios increased, suggesting a higher solubility of these elements and/or their stronger stabilization (e.g., for Zn compared to Fe). Our data indicate that at the magmatically influenced Macauley and Brothers cone sites, the transport of trace metals is strongly controlled by sulfide nanoparticles, while at the Brothers NW caldera wall site iron oxyhydroxides seem to dominate the trace metal transport over sulfides. Solution stabilization of trace metals by organic complexation appears to compete with particle adsorption processes. As well as extending the generally sparse data set for hydrothermal plumes at volcanic arc systems, our study presents the first data on several dissolved trace metals in the Macauley system, and extends the existing plume dataset of Brothers volcano. Our data further indicate that chemical signatures and processes at arc volcanoes are highly diverse, even on small scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Recent studies, including many from the GEOTRACES program, have expanded our knowledge of trace metals in the Arctic Ocean, an isolated ocean dominated by continental shelf and riverine inputs. Here, we report a unique, pan-Arctic linear relationship between dissolved copper (Cu) and nickel (Ni) present north of 60°N that is absent in other oceans. The correlation is driven primarily by high Cu and Ni concentrations in the low salinity, river-influenced surface Arctic and low, homogeneous concentrations in Arctic deep waters, opposing their typical global distributions. Rivers are a major source of both metals, which is most evident within the central Arctic's Transpolar Drift. Local decoupling of the linear Cu-Ni relationship along the Chukchi Shelf and within the Canada Basin upper halocline reveals that Ni is additionally modified by biological cycling and shelf sediment processes, while Cu is mostly sourced from riverine inputs and influenced by mixing. This observation highlights differences in their chemistries: Cu is more prone to complexation with organic ligands, stabilizing its riverine source fluxes into the Arctic, while Ni is more labile and is dominated by biological processes. Within the Canadian Arctic Archipelago, an important source of Arctic water to the Atlantic Ocean, contributions of Cu and Ni from meteoric waters and the halocline are attenuated during transit to the Atlantic. Additionally, Cu and Ni in deep waters diminish with age due to isolation from surface sources, with higher concentrations in the younger Eastern Arctic basins and lower concentrations in the older Western Arctic basins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: An insufficient supply of the micronutrient iron (Fe) limits phytoplankton growth across large parts of the ocean. Ambient Fe speciation and solubility are largely dependent on seawater physico-chemical properties. We calculated the apparent Fe solubility (SFe(III)app) at equilibrium for ambient conditions, where SFe(III)app is defined as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to organic matter formed at a free Fe3+ concentration equal to the solubility of Fe hydroxide. We compared the SFe(III)app to measured dissolved Fe (dFe) in the Atlantic and Pacific Oceans. The SFe(III)app was overall ∼2 to 4-fold higher than observed dFe at depths less than 1000 m, ∼2-fold higher than the dFe between 1000-4000 m and ∼3-fold higher than dFe below 4000 m. Within the range of used parameters, our results showed that there was a similar trend in the vertical distributions of horizontally averaged SFe(III)app and dFe. Our results suggest that vertical dFe distributions are underpinned by changes in SFe(III)app which are driven by relative changes in ambient pH and temperature. Since both pH and temperature are essential parameters controlling ambient Fe speciation, these should be accounted for in investigations of changing Fe dynamics, particularly in the context of ocean acidification and warming. Key Points Apparent iron solubility is driven by ambient pH, temperature (T) and dissolved organic carbon (DOC), and showed a 6-fold variation between surface (pH= 8.05 on the total scale, DOC= 71.8 µmol L-1, T= 20.4 °C) and deep oceanic waters (pH= 7.82, DOC= 38.6 µmol L-1, T= 1.1°C). Higher values of apparent iron solubility were determined for deep Atlantic and Pacific waters, with lower values in subtropical gyres. Calculated apparent iron solubility showed a similar trend in vertical distribution to dissolved iron, highlighting the importance of considering the impact of changes in ambient physico-chemical conditions on seawater iron chemistry.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-19
    Description: Hydrothermal vents are a source of many trace metals to the oceans. Compared to mid ocean ridges, hydrothermal vent systems at arcs occur in shallower water depth and are much more diverse in fluid composition, resulting in highly variable water column trace metal concentrations. However, only few studies have focused on trace metal dynamics in hydrothermal plumes at volcanic arcs. During R/V Sonne cruise SO253 in 2016/2017, hydrothermal plumes from two hydrothermally active submarine volcanoes along the Kermadec arc in the Southwest Pacific Ocean were sampled for trace metals and nutrients: (1) Macauley, a magmatic dominated vent site located in water depths between 300 and 680 m, and (2) Brothers, located between 1,200 and 1,600 m water depth, where hydrothermalism influenced by water rock interactions and magmatically influenced vent sites occur near each other.
    Keywords: Brothers volcano; Cadmium; Center for Marine Environmental Sciences; Cobalt; Copper; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; HYDROTHERMADEC; hydrothermalism at intraoceanic arcs; Iron; Lanthanum; Latitude of event; Lead; Location; Longitude of event; Macauely volcano; Manganese; MARUM; Nickel; Nitrogen oxide; Phosphate; plume dispersion; Sample code/label; Silicon dioxide; SO253; SO253_10-1; SO253_12-1; SO253_4-1; SO253_46-1; SO253_49-1; SO253_53-1; SO253_54-1; SO253_57-1; SO253_58-1; SO253_60-1; SO253_6-1; SO253_62-1; SO253_70-1; SO253_83-1; Sonne_2; South Pacific Ocean; trace metals; Zinc; δ Helium-3
    Type: Dataset
    Format: text/tab-separated-values, 1783 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-10-19
    Description: Two CTD/water sampler systems were deployed during RV POLARSTERN cruise PS117. Both CTDs are SBE911plus from the manufacturer Seabird Scientific. The data from the AWI CTD have already been processed and are stored in Pangaea under https://doi.pangaea.de/10.1594/PANGAEA.910663 and can be downloaded there. The NIOZ-Ultra Clean CTD incl. water sampler could not be used with direct data transmission, so it was operated together with a SBE17 for control and storage of the data. At the beginning of the cruise there were problems with the setup of the SBE17 unit so that profiles were not recorded completely. After several attempts, the problem was identified in the SBE17. A replacement of this unit was shipped to Neumayer Station and brought on board POLARSTERN. After the replacement of the SBE17 the system worked reliable. However, this also meant that the failure of a conductivity sensor was only detected and replaced at a late stage. For this reason, usable CTD profiles are only available from station 36 onwards. In order to obtain a data set comparable to the AWI-CTD, profiles made with AWI-CTD and NIOZ-CTD at the same stations were used. The difference between the processed AWI-CTD and the unprocessed NIOZ-CTD is used to correct the NIOZ-CTD.
    Keywords: AWI_PhyOce; Calculated; CTD, Sea-Bird, SBE 911plus [SN: T1197-C3267 and T1197-C3385]; CTD/Rosette, ultra clean; CTD-UC; DATE/TIME; Density, sigma-theta (0); Depth, bathymetric; DEPTH, water; Event label; LATITUDE; Lazarev Sea; LONGITUDE; Oxygen, dissolved; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS117; PS117_14-4; PS117_16-1; PS117_18-4; PS117_20-1; PS117_22-5; PS117_25-1; PS117_27-1; PS117_30-2; PS117_34-3; PS117_36-1; PS117_38-1; PS117_41-10; PS117_41-13; PS117_41-4; PS117_41-8; PS117_53-2; PS117_56-1; PS117_61-1; PS117_65-1; PS117_66-4; PS117_67-1; PS117_70-1; PS117_73-1; PS117_75-1; PS117_82-1; PS117_85-1; PS117_91-1; PS117_93-1; PS117_95-1; Salinity; South Atlantic Ocean; Temperature, water; Temperature, water, potential; Type; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 343396 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...