ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-23
    Description: Magma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.
    Description: ERC ADV 2018
    Keywords: ddc:550.724 ; Effusive-explosive transitions ; Trachytic magma ; Vulcanian eruption ; Magma Viscosity ; Crystallization ; Degassing ; Nanolites ; Cristobalite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-31
    Description: The quantification of the maximum runout, invaded area, volume, and total grain-size distribution (TGSD) of pyroclastic density currents (PDC) is a critically important task because such parameters represent the needed necessary input quantities for physical modeling and hazard assessment of PDCs. In this work, new and well-established methods for the quantification of these parameters are applied to a large stratigraphic dataset of three PDC units from two eruptions of Somma-Vesuvius (the AD 79 Pompeii and the AD 472 Pollena eruptions), representative of a large spectrum of transport and depositional processes. Maximum runout and invaded area are defined on the basis of the available volcanological and topographical constraints. The related uncertainties are evaluated with an expert judgment procedure, which considersed the different sectors of the volcano separately. Quite large uncertainty estimates of dispersal area (20–40%) may have important implications in terms of hazard assessment. The testing of different methods for estimating the volume (and mass) of a PDC deposit suggests that integration, over the invaded area, of thickness (and deposit density) data using the triangulated irregular network method can minimize and localize data extrapolation. Such calculations, however, bear an intrinsic additional uncertainty (at least 10% of the total PDC deposit) related to loss or new formation of fine material during transport (at least 10% of the total PDC deposit). Different interpolation methods for TGSD produce multimodal distributions, likely reflecting the different response of each grain size class to transport and deposition processes. These data, when integrated with information on the related co-ignimbrite deposits, can give a more accurate picture of the pyroclastic mixture feeding the current.
    Description: Published
    Description: Id 65
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-15
    Description: Juvenile pyroclasts, especially in the ash size range, provide important information on primary fragmentation processes, i.e., initial explosive magma fragmentation, and on the state of the magma both prior to and at the point of fragmentation and quenching. There exists an extensive body of literature focusing on the quantification of juvenile particle morphology (shape), internal textures, and surface features spanning several decades; however, a standardized method has yet to emerge for comparative studies. No community-wide consensus currently exists (i) regarding the most representative size fraction(s) to be examined, (ii) on sample preparation procedures (such as whether to use whole-particle silhouettes or 2D cross-sections), (iii) on imaging techniques and image acquisition parameters, or (iv) on the optimal morphometric parameters to measure. Lack of a standardized method precludes robust comparison between different studies and laboratories. We propose here a preliminary “best practices” and workflow for characterization of juvenile pyroclasts, for comparative studies of primary fragmentation. If the community follows such a standardized method, it will become possible to accumulate a large volume of consistent data on juvenile pyroclasts from a range of eruption styles, fragmentation mechanisms, and magma compositions. This will ultimately allow deeper insights into the full panoply of magma-to-pyroclast processes that drive particleproducing volcanic eruptions. One or more “fragmentation diagrams” may eventually be developed to allow different types of magmatic and phreatomagmatic explosive eruptions to be distinguished based on their products.
    Description: The Natural Sciences and Engineering Research Council of Canada (NSERC), using a Discovery Grant to the first author (RGPIN-2015-06782).
    Description: Published
    Description: 13
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Analysis of juvenile pyroclasts ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-16
    Description: ASHER, a new sensor for the characterization of tephra fallout in real time, was designed and developed for easy field deployment during volcanic eruptions. It can provide information on the accumulation rate of tephra fallout in real time as well as grain-size and settling velocity of falling particles. Particle detection is achieved with a laser barrier, with size and settling velocity being calculated from the amplitude and duration of obscuration peaks. The sampling rate (31,500 Hz), laser thickness (0.5 mm) and operation (ON/OFF state and dual acquisition mode) are adapted to minimize the noise level and allow detection of particles as small as ~100 μm. Additional measurements of weight and level of accumulated material within a removable collector allow broadening of the ASHER operation to accumulation rate from 10−2 to 103 g m-2s-1. Detailed calibration tests were performed in laboratory conditions on single grains of known shape and density along with a high-speed camera to test the capability to measure grain size and terminal velocity, and during two field campaigns at Stromboli and Etna volcanoes to test the operation in the field. Long-term field deployment has shown that combining the optical barrier with an automatic collector allows for a better characterization of tephra fallout, providing an estimate of density, and, therefore, it optimizes sensor operation and minimizes false alerts. Moreover, the low power requirements and onboard processing allows to operate the sensor remotely and solely on solar power in a remote location. Although technical improvements in sensor sensitivity and processing are still possible, the results presented suggest that ground sensors for real-time detection and analysis of tephra could potentially contribute to understanding the dynamics of explosive eruptions and could be successfully integrated into monitoring systems of active volcanoes.
    Description: Published
    Description: 107611
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-29
    Description: When a lava flow enters a body of water, either a lake, sea, river or ocean, explosive interaction may arise. However, when it is an 'a'ā lava flow entering water, a more complex interaction occurs, that is very poorly described and documented in literature. In this paper, we analysed the 2–4 ka San Bartolo lava flow field emplaced on the north flank of Stromboli volcano, Italy. The lava flow field extends from ~ 650 m a.s.l. where the eruptive fissure is located, with two lava channels being apparent on the steep down to the coast. Along the coast the lava flow field expands to form a lava delta ~ 1 km wide characterised by 16 lava ‘Flow’ units. We performed a field survey to characterise the features of lava entering the sea and the associated formation of different components and magnetic measurements to infer the flow fabrics and emplacement process of the lava flow system. We measured the density, porosity and connectivity of several specimens to analyse the effect of lava-water interaction on the content in vesicles and their connectivity and conducted a macroscopic componentry analysis (clast count) at selected sites to infer the character of the eroded offshore segment of the lava flow field and its component flow units. The collected data allowed us to define the main components of a lava delta fed by 'a'ā lava flows, with its channels, littoral units, ramps, lava tubes, and inflated pāhoehoe flows controlled by the arterial 'a'ā flow fronts. The spatial organisation of these components allowed us to build a three-step descriptive model for 'a'ā entering a water. The initial stage corresponds to the entry of channel-fed 'a'ā lava flow into the sea which fragments to form metric blocks of 'a'ā lava. Continued lava supply to the foreshore causes flow units to stall while spreading over this substrate. Subsequent 'a'ā lava flow units ramp up behind the stalled flow front barrier. Lava tubes extending through the stalled flow barrier feed the seaward extension of a bench made of several pāhoehoe flow units.
    Description: Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agreement. This project is a part of RS PhD project. This research was funded by MIUR ex-60% attributed to EZ and PhD grants-Budget 10% attributed to RS. Also, it was partially funded by the Project FIRST (ForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration), INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). This is contribution no. 637 of the ClerVolc program of the International Research Center for Disaster Sciences and Sustainable Development of the University of Clermont Auvergne.
    Description: Published
    Description: 50
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Stromboli volcano ; flank eruptions ; Lava flows
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...