ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Physical geography. ; Paleoecology. ; Evolution (Biology). ; Geochemistry. ; Earth System Sciences. ; Paleoecology. ; Evolutionary Biology. ; Geochemistry.
    Description / Table of Contents: Chapter 1-Introduction -- Chapter 2-Biogeochemical processes -- Chapter 3-Taphonomy and diagenesis of seeps -- Chapter 4-Biota -- Chapter 5-Seeps around the world -- Chapter 6-Seeps as ecosystems -- Chapter 7-Evolution of seep communities over geological time -- Chapter 8-Cognate communities.
    Abstract: This volume details the function of hydrocarbon seeps, their evolution over time, the most important seep occurrences and the fauna present in ancient hydrocarbon seeps. While several publications exist that cover modern seeps and vents, fossil seeps only constitute a small component of the literature. As such, many geologists, stratigraphers and paleontologists, as well as undergraduates and graduate students, are not very familiar with ancient hydrocarbon seep deposits and their associated fauna. This text is the first to comprehensively discuss the nature of such animal groups and how to recognize them. In addition to summarizing available knowledge on these topics for specialists in the field, this book offers the background needed to be of use to students as well as the wider community of geologists and paleontologists.
    Type of Medium: Online Resource
    Pages: XVII, 687 p. 129 illus., 71 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783031056239
    Series Statement: Topics in Geobiology ; 53
    DDC: 550
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-07
    Description: Dataset: GP15 Water Column 210Po and 210Pb - Dissolved and Total - Leg 2
    Description: This project is part of the international GEOTRACES program, which was created to allow a comprehensive, coordinated study of trace elements and isotopes (TEIs) in the oceans. This project uses the radionuclide pair 210Pb and its grand-daughter, 210Po, to provide important biogeochemical rate information pertinent to the trace elements and isotopes (TEIs) measured during the US GEOTRACES Meridional Transect in the Pacific from Alaska to Tahiti in late 2018. Many processes in the ocean cannot be directly observed and, as such, tracers such as 210Po and 210Pb can be used to provide important constraints on their rates and pathways. 210Po (half-life = 138 d) and 210Pb (half-life = 22.3 y) decay on timescales that are useful to study 1) atmospheric deposition of trace elements, 2) scavenging of particle-reactive trace elements, 3) export of particulate organic carbon (POC) from the photic zone, and 4) the fate of hydrothermal plumes dispersed from the mid-ocean ridge system. The present data set primarily includes measurements of 210Po and 210Pb on filtered water samples (i.e., "dissolved" activities) collected with CTD casts. Surface water samples were collected separately and were unfiltered, so represent "total" activities. Particulate samples also were collected using in situ pumps and those data are reported separately. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/883797
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736591, NSF Division of Ocean Sciences (NSF OCE) OCE-1736612
    Description: 2023-06-30
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-31
    Description: Dataset: GP15 Water Column 210Po and 210Pb - Dissolved and Total - Leg 1
    Description: This project is part of the international GEOTRACES program, which was created to allow a comprehensive, coordinated study of trace elements and isotopes (TEIs) in the oceans. This project uses the radionuclide pair 210Pb and its grand-daughter, 210Po, to provide important biogeochemical rate information pertinent to the trace elements and isotopes (TEIs) measured during the US GEOTRACES Meridional Transect in the Pacific from Alaska to Tahiti in late 2018. Many processes in the ocean cannot be directly observed and, as such, tracers such as 210Po and 210Pb can be used to provide important constraints on their rates and pathways. 210Po (half-life = 138 d) and 210Pb (half-life = 22.3 y) decay on timescales that are useful to study 1) atmospheric deposition of trace elements, 2) scavenging of particle-reactive trace elements, 3) export of particulate organic carbon (POC) from the photic zone, and 4) the fate of hydrothermal plumes dispersed from the mid-ocean ridge system. The present data set primarily includes measurements of 210Po and 210Pb on filtered water samples (i.e., "dissolved" activities) collected with CTD casts. Surface water samples were collected separately and were unfiltered, so represent "total" activities. Particulate samples also were collected using in situ pumps and those data are reported separately. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/883724
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736591, NSF Division of Ocean Sciences (NSF OCE) OCE-1736612
    Description: 2023-06-01
    Keywords: radionuclides ; polonium-210 ; lead-210 ; POC export ; scavenging
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Glacial meltwater is an important source of bioessential trace elements to high latitude oceans. Upon delivery to coastal waters, glacially sourced particulate trace elements are processed during early diagenesis in sediments and may be sequestered or recycled back to the water column depending on local biogeochemical conditions. In the glaciated fjords of Svalbard, large amounts of reactive Fe and Mn (oxyhydr)oxides are delivered to the sediment by glacial discharge, resulting in pronounced Fe and Mn cycling concurrent with microbial sulfate reduction. In order to investigate the diagenetic cycling of selected trace elements (As, Co, Cu, Mo, Ni, and U) in this system, we collected sediment cores from two Svalbard fjords, Van Keulenfjorden and Van Mijenfjorden, in a transect along the head-to-mouth fjord axis and analyzed aqueous and solid phase geochemistry with respect to trace elements, sulfur, and carbon along with sulfate reduction rates. We found that Co and Ni associate with Fe and Mn (oxyhydr)oxides and enter the pore water upon reductive metal oxide dissolution. Copper is enriched in the solid phase where sulfate reduction rates are high, likely due to reactions with H2S and the formation of sulfide minerals. Uranium accumulates in the solid phase likely following reduction by both Fe- and sulfate-reducing bacteria, while Mo adsorbs to Fe and Mn (oxyhydr)oxides in the surface sediment and is removed from the pore water at depth where sulfidization makes it particle-reactive. Arsenic is tightly coupled to Fe redox cycling and its partitioning between solid and dissolved phases is influenced by competition with FeS for adsorption sites on crystalline Fe oxides. Differences in trace element cycling between the two fjords suggest delivery of varying amount and composition of tidewater glacier (Van Keulenfjorden) and meltwater stream (Van Mijenfjorden) material, likely related to oxidative processes occurring in meltwater streams. This processing produces a partially weathered, more reactive sediment that is subject to stronger redox cycling of Fe, Mn, S, and associated trace elements upon delivery to Van Mijenfjorden. With climate warming, the patterns of trace element cycling observed in Van Mijenfjorden may also become more prevalent in other Svalbard fjords as tidewater glaciers retreat into meltwater stream valleys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-01
    Description: The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ($$ilde{chi }^0_1$$ χ ~ 1 0 ), and quarks, are presented: the signal is characterised by the presence of a single charged lepton ($$e^{pm }$$ e ± or $$mu ^{pm }$$ μ ± ) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$$^{-1}$$ - 1 of proton–proton collision data taken at a centre-of-mass energy $$sqrt{s}=13$$ s = 13   delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2  (1.4 ) are excluded at 95% confidence level for a light $$ilde{chi }^0_1$$ χ ~ 1 0 .
    Print ISSN: 1434-6044
    Electronic ISSN: 1434-6052
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-15
    Description: Methane seep deposits, comprising large, carbonate-rich mounds formed from hydrocarbon seepage, were widely distributed in the Late Cretaceous Western Interior Seaway (WIS) of North America. Well-preserved, methane-derived authigenic carbonates (MDACs) from these deposits have been shown to retain petrological, paleontological, and geochemical imprints of their ancient depositional setting, all of which are important for understanding the dynamics and evolution of the shallow, epeiric WIS. To better characterize the environmental conditions of WIS seeps, we applied clumped isotope paleothermometry to magnesium calcite MDAC samples from five seep localities in the upper Campanian Pierre Shale, South Dakota, USA. We measured 21 subsamples, including 18 micritic carbonates and demonstrated apparent clumped isotope equilibrium between MDACs and WIS bottom waters. Extreme 13C depletion in most samples (δ13C ranging to −45.44‰) indicates they were precipitated with oxidized methane as a major source of dissolved inorganic carbon, which itself implies a close association with ancient methanotrophic metabolism. The average clumped isotope paleotemperature from the micritic carbonates is 23 ± 7 °C (1σ standard deviation), which agrees with bottom water paleotemperatures inferred from δ18O measurements of MDACs and well-preserved mollusk shells at similar localities in the WIS. The calculated average δ18Ow value for these samples is −0.5 ± 1.7‰ (1σ SD), which is indistinguishable from previously reported calculation on Campanian seawater δ18Ow from fossil mollusk shells, but elevated above younger fossils collected from other locations in the WIS. Our conclusions are inconsistent with previously hypothesized disequilibrium for WIS MDAC clumped isotope and therefore we propose that fossil MDAC deposits may be used as paleotemperature archives.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...