ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Oman  (3)
  • Fault interaction
  • 2020-2024  (5)
  • 1
    Publication Date: 2024-02-01
    Description: Molecular systematic studies of the anthozoan class Octocorallia have revealed widespread incongruence between phylogenetic relationships and taxonomic classification at all levels of the Linnean hierarchy. Among the soft coral taxa in order Malacalcyonacea, the family Alcyoniidae and its type genus Alcyonium have both been recognised to be highly polyphyletic. A recent family-level revision of Octocorallia established a number of new families for genera formerly considered to belong to Alcyoniidae, but revision of Alcyonium is not yet complete. Previous molecular studies have supported the placement of Alcyonium verseveldti (Benayahu, 1982) in family Cladiellidae rather than Alcyoniidae, phylogenetically distinct from the other three genera in that family. Here we describe a new genus, Ofwegenum gen. nov. to accommodate O. verseveldti comb. nov. and three new species of that genus, O. coronalucis sp. nov., O. kloogi sp. nov., and O. colli sp. nov., bringing the total number of species in this genus to four. Ofwegenum gen. nov. is a rarely encountered genus so far known from only a few locations spanning the Indian and western Pacific Oceans. We present the morphological characters of each species and use molecular data from both DNA barcoding and target-enrichment of conserved elements to explore species boundaries and phylogenetic relationships within the genus.
    Keywords: DNA barcoding ; molecular phylogeny ; new combination ; northern Red Sea ; Ofwegenum gen. nov. ; Oman ; R\xc3\xa9union ; sclerites ; target-enrichment ; taxonomy ; ultraconserved elements
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-13
    Description: We model Coulomb stress transfer (CST) due to 30 strong earthquakes occurring on normal faults since 1509 CE in Calabria, Italy, including the influence of interseismic loading, and compare the results to existing studies of stress interaction from the Central and Southern Apennines, Italy. The three normal fault systems have different geometries and long-term slip-rates. We investigate the extent to which stress transfer can influence the occurrence of future earthquakes and what factors may govern the variability in earthquake recurrence in different fault systems. The Calabrian, Central Apennines, and Southern Apennines fault systems have 91%, 73%, and 70% of faults with mean positive cumulative CST in the time considered; this is due to fewer faults across strike, more across strike stress reductions, and greater along-strike spacing in the three regions respectively. In regions with close along strike spacing or few faults across strike, such as Calabria and Southern Apennines, the stress loading history is mostly dominated by interseismic loading and most faults are positively stressed before an earthquake occur on them (96% of all faults that ruptured in Calabria; 94% of faults in Southern Apennines), and some of the strongest earthquakes occur on faults with the highest mean cumulative stress of all faults prior to the earthquake. In the Central Apennines, where across strike interactions are the predominant process, 79% of earthquakes occur on faults positively stressed. The results highlight that fault system geometry plays a central role in characterizing the stress evolution associated with earthquake recurrence.
    Description: This work was supported by a Natural Environment Research Council studentship (Grant NE/L002485/1) to Claudia Sgambato. Original development of the 3D-faults code was supported by NERC PhD Studentship NE/L501700/1 and JSPS Short Term Fellowship PE15776 to Zoë Mildon.
    Description: Published
    Description: e2023JB026496
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Fault interaction ; Tectonics of Calabria ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-18
    Description: We document aggregations of an undescribed benthic solitary tunicate of the family Pyuridae from the Arabian Sea. This new genus was found forming dense thickets in shallow rocky substrates around Masirah Island and the Dhofar area in Oman. Such aggregations of tunicates have not been reported before from coral reefs in the Indo-West Pacific region and the Atlantic. This observation contributes to our understanding of the ecology and biogeography of ascidians, setting the stage for a comprehensive species description and in-depth analysis of this species.
    Keywords: Indian Ocean ; Masirah Island ; Ascidiacea ; Oman ; phylogeny ; anatomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-18
    Description: We document the benthic ctenophores Coeloplana sp. and Vallicula multiformis from Oman, extending their geographic range. A new Coeloplana species was found forming aggregations on gorgonians of two octocoral host genera, Melithaea and Euplexaura, representing associations previously unknown to occur in the Indo-West Pacific region. Our findings also illustrate the concurrent presence of the ectocommensal ophiuroid Ophiothela mirabilis, which adversely affects other Coeloplana species in the tropical West Atlantic, where it is considered invasive. This exploration contributes to our understanding of the biogeography, species distribution, and ectosymbiotic associations of these genera, setting the stage for a comprehensive species description and in-depth analysis of host relationships in future studies.
    Keywords: Ctenophora ; Octocorallia ; Arabian Sea ; Platyctenida ; Oman ; Masirah Island ; ectosymbiotic
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-03
    Description: Uncertainty concerning the processes responsible for slip-rate fluctuations associated with temporal clustering of surface faulting earthquakes is a fundamental, unresolved issue in tectonics, because strain-rates accommodated by fault/shear-zone structures are the key to understanding the viscosity structure of the crust and seismic hazard. We constrain the timing and amplitude of slip-rate fluctuations that occurred on three active normal faults in central Italy over a time period of 20–30 kyrs, using in situ 36Cl cosmogenic dating of fault planes. We identify five periods of rapid slip on individual faults lasting a few millennia, separated time periods of up to 10 millennia with low or zero slip-rate. The rapid slip pulses migrated across the strike between the faults in two waves from SW to NE. We replicate this migration with a model where rapid slip induces changes in differential stress that drive changes in strain-rate on viscous shear zones that drive slip-rate variability on overlying brittle faults. Earthquakes increase the differential stress and strain-rate on underlying shear zones, which in turn accumulate strain, re-loading stress onto the overlying brittle fault. This positive feedback produces high strain-rate episodes containing several large magnitude surface faulting earthquakes (earthquake clusters), but also reduce the differential stress on the viscous portions of neighbouring fault/shear-zones slowing the occurrence of large-magnitude surface faulting earthquakes (earthquake anticlusters). Shear-zones on faults experiencing anticlusters continue to accumulate viscous strain at a lowered rate, and eventually this loads the overlying brittle fault to failure, initiating a period of rapid slip through the positive feedback process described above, and inducing lowered strain-rates onto neighbouring fault/shear-zones. We show that these patterns of differential stress change can replicate the measured earthquake clustering implied by the 36Cl data. The stress changes are related to the fault geometry in terms of distance and azimuth from the slipping structure, implying that (a) strain-rate and viscosity fluctuations for studies of continental rheology, and (b) slip-rates for seismic hazard purposes are to an extent predictable given knowledge of the fault system geometry.
    Description: Published
    Description: 105096
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Active Faults ; Central Apennines ; Fault interaction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...