ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EuroSea  (7)
  • Copernicus Publications (EGU)  (6)
  • EU Publication
  • 2020-2024  (13)
  • 1
    Publication Date: 2023-09-12
    Description: Report on European glider network coordination (Best Practices, OceanGliders, metadata and data management
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-12
    Description: This report provides recommendations to foster collaboration and cooperation between technologies and disciplines and for implementing truly integrated ocean observing systems. Based on an intensive literature review and a careful examination of different examples of integration in different fields, this work identifies the issues and barriers that must be addressed, and proposes a vision for a real implementation of this ocean integration ambition. This work is a contribution to the implementation of EOOS, a much-needed step forward in Europe, following the international guidance of GOOS.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-23
    Description: EuroSea is a holistic large-scale project encompassing the full value chain of marine knowledge, from observations to modelling and forecasting and to user-focused services. This report summarizes the legacy of EuroSea as planned and measured through a dedicated impact monitoring protocol, a holistic assessment of the project's successes in advancing and integrating European ocean observing and forecasting systems. Since its start, EuroSea has been analysing how well the project progresses towards the identified areas of impact. Impact assessment is not performance evaluation. These terms overlap but are distinct: performance relates to the efficient use of resources; impact relates to the transformative effect on the users. The EuroSea legacy report is presented through an aggregation and analysis of the EuroSea work towards achieving its impacts. Overall, over 100 impacts have been identified and presented on the website and in a stand-alone impact report. The legacy report sheds light on 32 most powerful impacts (four impacts in each of the eight EuroSea impact areas). EuroSea Impact Areas: 1. Strengthen the European Ocean Observing System (EOOS), support the Global Ocean Observing System (GOOS) and the GOOS Regional Alliances; 2. Increase ocean data sharing and integration; 3. Deliver improved climate change predictions; 4. Build capacity, internally in EuroSea and externally with EuroSea users, in a range of key areas; 5. Develop innovations, including exploitation of novel ideas or concepts; shorten the time span between research and innovation and foster economic value in the blue economy; 6. Facilitate methodologies, best practices, and knowledge transfer in ocean observing and forecasting; 7. Contribute to policy making in research, innovation, and technology; 8. Raise awareness of the need for a fit for purpose, sustained, observing and forecasting system in Europe. Ocean observing and forecasting is a complex activity brining about a variety of technologies, human expertise, in water and remote sensing measurements, high-volume computing and artificial intelligence, and a high degree of governance and coordination. Determining an impact on a user type or an area, therefore, requires a holistic assessment and a clear strategic overview. The EuroSea impact monitoring protocol has been the first known such attempt in a European ocean observing and forecasting project. The project’s progress has been followed according to the identified impact areas, through consortium workshops, stakeholder webinars, tracking, and reporting. At the end of EuroSea, we are able to demonstrate how well we have responded to the European policy drivers set out in the funding call and the grant agreement of our project, signed between the European Commission and 53 organizations, members of the EuroSea consortium. The project's impact is diverse, spanning areas from strengthening ocean observing governance to contributing to policymaking or boosting ocean research, innovation, and technology. Each impact area underscores EuroSea's commitment to a sustainable and informed approach to ocean observing and forecasting for enhanced marine knowledge and science-based sustainable blue economy and policies.
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime deep convection, which homogenizes the water column to a depth of up to 2000 m and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a 2-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53∘ N show a cooling, freshening, and increase in oxygen content of the water flowing out of the basin between March and August. Analysis of Argo float data suggests that this is preceded by an increased input of LSW into the boundary current about 1 month earlier. This input is the result of newly ventilated LSW entering from the interior, as well as LSW formed directly within the boundary current. Together, these results imply that the southward export of newly formed LSW primarily occurs in the months following the onset of deep convection, from March to August, and that this direct LSW export route controls the seasonal oxygen increase in the outflow at 600 m depth. During the rest of the year, properties of the boundary current measured at 53∘ N resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 µmol L−1 in January to a maximum of 306 µmol L−1 in April. As a result of this LSW input, an estimated (1.60 ± 0.42) × 1012 mol yr−1 of oxygen are added to the outflowing boundary current, mostly during spring and summer, equivalent to 50 % of the wintertime uptake from the atmosphere in the interior of the basin. The export of oxygen from the subpolar gyre associated with this direct southward pathway of LSW is estimated to supply 42 %–71 % of the oxygen consumed annually in the upper North Atlantic Deep Water layer in the Atlantic Ocean between the Equator and 50∘ N. Our results show that the formation of LSW is important for replenishing oxygen to the deep oceans, meaning that possible changes in its formation rate and ventilation due to climate change could have wide-reaching impacts on marine life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The key processes driving the air–sea CO2 fluxes in the western tropical Atlantic (WTA) in winter are poorly known. WTA is a highly dynamic oceanic region, expected to have a dominant role in the variability in CO2 air–sea fluxes. In early 2020 (February), this region was the site of a large in situ survey and studied in wider context through satellite measurements. The North Brazil Current (NBC) flows northward along the coast of South America, retroflects close to 8∘ N and pinches off the world's largest eddies, the NBC rings. The rings are formed to the north of the Amazon River mouth when freshwater discharge is still significant in winter (a time period of relatively low run-off). We show that in February 2020, the region (5–16∘ N, 50–59∘ W) is a CO2 sink from the atmosphere to the ocean (−1.7 Tg C per month), a factor of 10 greater than previously estimated. The spatial distribution of CO2 fugacity is strongly influenced by eddies south of 12∘ N. During the campaign, a nutrient-rich freshwater plume from the Amazon River is entrained by a ring from the shelf up to 12∘ N leading to high phytoplankton concentration and significant carbon drawdown (∼20 % of the total sink). In trapping equatorial waters, NBC rings are a small source of CO2. The less variable North Atlantic subtropical water extends from 12∘ N northward and represents ∼60 % of the total sink due to the lower temperature associated with winter cooling and strong winds. Our results, in identifying the key processes influencing the air–sea CO2 flux in the WTA, highlight the role of eddy interactions with the Amazon River plume. It sheds light on how a lack of data impeded a correct assessment of the flux in the past, as well as on the necessity of taking into account features at meso- and small scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The northwestern Tropical Atlantic Ocean is a turbulent region, filled with mesoscale eddies and regional currents. In this intense dynamical context, several water masses with thermohaline characteristics of different origins are advected, mixed, and stirred at the surface and at depth. The EUREC4A-OA/ATOMIC experiment that took place in January and February 2020 was dedicated to assessing the processes at play in this region, especially the interaction between the ocean and the atmosphere. For that reason, four oceanographic vessels and different autonomous platforms measured properties near the air–sea interface and acquired thousands of upper-ocean (up to 400–2000 m depth) profiles. However, each device had its own observing capability, varying from deep measurements acquired during vessel stations to shipboard underway near-surface observations and measurements from autonomous and uncrewed systems (such as Saildrones). These observations were undertaken with a specific sampling strategy guided by near-real-time satellite maps and adapted every half day, based on the process that was investigated. These processes were characterized by different spatiotemporal scales, from mesoscale eddies, with diameters exceeding 100 km, to submesoscale filaments of 1 km width. This article describes the datasets gathered from the different devices and how the data were calibrated and validated. In order to ensure an overall consistency, the platforms' datasets are cross-validated using a hierarchy of instruments defined by their own specificity and calibration procedures. This has enabled the quantification of the uncertainty in the measured parameters when different datasets are used together, e.g., https://doi.org/10.17882/92071 (L'Hégaret et al., 2020a).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Mesoscale eddies are abundant in the eastern tropical North Atlantic and act as oases for phytoplankton growth due to local enrichment of nutrients in otherwise oligotrophic waters. It is not clear whether these eddies can efficiently transfer organic carbon and other flux components to depth and if they are important for the marine carbon budget. Due to their transient and regionally restricted nature, measurements of eddies' contribution to bathypelagic particle flux are difficult to obtain. Rare observations of export flux associated with low-oxygen eddies have suggested efficient export from the surface to the deep ocean, indicating that organic carbon flux attenuation might be low. Here we report on particle flux dynamics north of the Cabo Verde islands at the oligotrophic Cape Verde Ocean Observatory (CVOO; approx. 17∘35′ N, 24∘15′ W). The CVOO site is located in the preferred pathways of highly productive eddies that ultimately originate from the Mauritanian upwelling region. Between 2009 and 2016, we collected biogenic and lithogenic particle fluxes with sediment traps moored at ca. 1 and 3 km water depths at the CVOO site. From concurrent hydrography and oxygen observations, we confirm earlier findings that highly productive eddies are characterized by colder and less saline waters and a low-oxygen signal as well. Overall, we observed quite consistent seasonal flux patterns during the passage of highly productive eddies in the winters of 2010, 2012 and 2016. We found flux increases at 3 km depth during October–November when the eddies approached CVOO and distinct flux peaks during February–March, clearly exceeding low oligotrophic background fluxes during winter 2011 and showing an enhanced particle flux seasonality. During spring, we observed a stepwise flux decrease leading to summer flux minima. The flux pattern of biogenic silicate (BSi) showed a stronger seasonality compared to organic carbon. Additionally, the deep fluxes of total mass showed an unusually higher seasonality compared to the 1 km traps. We assume that BSi and organic carbon/lithogenic material had different sources within the eddies. BSi-rich particles may originate at the eddy boundaries where large diatom aggregates are formed due to strong shear and turbulence, resulting in gravitational settling and, additionally, in an active local downward transport. Organic carbon associated with lithogenic material is assumed to originate from the interior of eddies or from mixed sources, both constituting smaller, dust-ballasted particles. Our findings suggest that the regularly passing highly productive eddies at CVOO repeatedly release characteristic flux signals to the bathypelagic zone during winter–spring seasons that are far above the oligotrophic background fluxes and sequester higher organic carbon than during oligotrophic settings. However, the reasons for a lower carbon flux attenuation below eddies remain elusive.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-19
    Description: Tide gauge metadata catalogue V1.0 (EU-TGN or European and adjacent areas Tide Gauge Network Inventory); accuracy and precision review of the EuroGOOS Tide Gauge Task Team (TGTT) database of permanent monitoring nodes for European and adjacent coastlines. A metadata catalogue of all permanent, managed tide level monitoring stations across Europe and adjacent coastlines, including North Africa.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-19
    Description: This deliverable provides an overview of EuroSea outcomes related to interior ocean carbon variability in deep convection areas in order to assess the linkage of these processes for the use in national climate action (NCA) plans delivered in the framework of the Paris Agreement. In summary, large-scale connectivity in the ocean does not allow clear delineation of patterns of regional carbon uptake across national boundaries, limiting an assessment of the Exclusive Economic Zones (EEZ) in light of NCA plans. This problem becomes already clear by a simple scale estimation: considering sluggish, open ocean (away from continental boundaries) advection speeds of 2 cm/s result in a “relocation” of any water parcel by roughly 630 km per year (or 3150 km in 5 years Paris Agreement carbon auditing period) and crossing national borders easily. Knowing changes in the global ocean carbon uptake is of great importance for the preparation of NCA plans. This is because the NCA plans are motivated by the globally averaged atmospheric CO2 concentration, which is the sum of all sources and sinks and including the ocean sink. In case of decrease in the oceanic sink (e.g., IPCC, 2021), more CO2 will remain in the atmosphere and consequently nations will need to formulate their NCA plans with increased ambition in order to meet the CO2 target defined in the Paris Agreement. In this deliverable key approaches for the assessment of the global ocean carbon uptake have been applied to ocean areas. The observational requirements for applying statistical approaches (i.e., artificial neural networks, Fourrier et al., 2020) to reconstruct dissolved inorganic carbon (DIC) from oxygen, nutrient and hydrographic data are analysed. It is shown that even small changes in the DIC content determined in this way can be linked to anthropogenic increases in atmospheric carbon (Cant). Furthermore, it has been shown that multilinear regression techniques can be used to produce maps of ocean surface carbon fluxes at very high spatial resolution, which in turn can provide a much more accurate estimate of regional CO2 uptake (or release). Finally, a quantification of the redistribution of dissolved gases in boundary current systems could be investigated by following recommendations for observational methods stemming from this deliverable. This deliverable recommends improvement of carbon sampling in all nations EEZ regions and following global standards. Because the objective targets a global assessment, the data must be disseminated rapidly and in a FAIR fashion to enable further global integration (e.g., global carbon budget). A need for defining responsibilities for such global integration and the resourcing is required. It is recommended to make use of statistical methods to create surface and interior carbon parameter distributions via multiparameter approaches with a sufficient amount of reference data (e.g., co-located DIC, oxygen, nutrients, chlorophyll-a, hydrography). In the light of the ongoing crisis related to global availability of the Certified Reference Materials (CRMs) for carbonate system measurements, provision of European-produced material becomes critical to enable traceability of future measurements. Nations should be encouraged to provide appropriate resources by means of corresponding European directives. Example for such national commitments is the collection of reference data in the framework of the Common Fisheries Policy.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...